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3.1 Introduction

In an electrical network, electrical energy is conveyed from
sources to an array of interconnected branches in which energy
is converted, dissipated or stored. Each branch has a charac-
teristic voltage—current relation that defines its parameters.
The analysis of networks is concerned with the solution of
source and branch currents and voltages in a given network
configuration. Basic and general network concepts are dis-
cussed in Section 3.2. Section 3.3 is concerned with the special
techniques applied in the analysis of power-system networks.

3.2 Basic network analysis

3.2.1 Network elements

Given the sources (generators, batteries, thermocouples,
etc.), the network configuration and its branch parameters,
then the network solution proceeds through network equa-
tions set up in accordance with the Kirchhoff laws.

3.2.1.1 Sources

In most cases a source can be represented as in Figure 3.1(a)
by an electromotive force (e.m.f.) Ey acting through an
internal series impedance Z, and supplying an external
‘load’ Z with a current [ at a terminal voltage V. This is the
Helmholtz-Thevenin equivalent voltage generator. As regards
the load voltage " and current /, the source could equally well
be represented by the Helmholtz—Norton equivalent current
generator in Figure 3.1(b), comprising a source current I
shunted by an internal admittance Y, which is effectively in
parallel with the load of admittance Y. Comparing the two
forms for the same load current 7/ and terminal voltage V' in a
load of impedance Z or admittance Y= 1/Z, we have:

Voltage generator Current generator

V =Ey,—1IZ, I=I1,- VY,

1= (E—V)/Z V=(Ih—1)/Y,
=Ey/Zy—V/]Z =1)/Yo—1/Y,
=1 — VY, =Ey — 17,

These are identical provided that Iy = Ey/Zy and Yy=1/Z,.
The identity applies only to the load terminals, for internally
the sources have quite different operating conditions. The two
forms are duals. Sources with Zy=0 and Y,=0 (so that
V= Eyand I= I) are termed ideal generators.

3.2.1.2 Parameters

When a real physical network is set up by interconnecting
sources and loads by conducting wires and cables, all parts
(including the connections) have associated electric and
magnetic fields. A resistor, for example, has resistance as the

(a) (b)

Figure 3.1 (a) Voltage and (b) current sources
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Figure 3.2 Pure parameters

prime property, but the passage of a current implies a mag-
netic field, while the potential difference (p.d.) across the
resistor implies an electric field, both fields being present in
and around the resistor. In the equivalent circuit drawn to
represent the physical one it is usual to lump together the
significant resistances into a limited number of lumped
resistances. Similarly, electric-field effects are represented
by lumped capacitance and magnetic-field effects by lumped
inductance. The equivalent circuit then behaves like the
physical prototype if it is so constructed as to include all
significant effects.

The lumped parameters can now be considered to be free
from ‘residuals’ and pure in the sense that simple laws of
behaviour apply. These are indicated in Figure 3.2.

(a) Resistance For a pure resistance R carrying an instanta-
neous current 7, the p.d. is v=Ri and the rate of heat
production is p=vi= Ri’. Alternatively, if the conduc-
tance G=1/R is used, then i=Gv and p=vi=G».
There is a constant relation

v=Ri=v/G; i=Gv=v/R; p=Ri’=GV

(b) Inductance With a self-inductance L, the magnetic
linkage is Li, and the source voltage is required only
when the linkage changes, i.e. v=d(Li)/dt= L(di/d?).
An inductor stores in its magnetic field the energy
w= %Liz. The behaviour equations are

v=L(di/dr); i=(1/L)[vds

Two inductances L; and L, with a common magnetic field
have a mutual inductance L, = L,; such that an e.m.f. is
induced in one when current changes in the other:

ey = le(diz/dl); ey = Ly (dil/d[)<:

The direction of the e.m.f.s depends on the change
(increase or decrease) of current and on the ‘sense’ in
which the inductors are wound. The ‘dot convention’ for
establishing the sense is to place a dot at one end of the
symbol for L;, and a dot at that end of L, which has the
same polarity as the dotted end of L, for a given change in
the common flux.

(¢) Capacitance The stored charge ¢ is proportional to the
p.d. such that ¢ = Cv. When v is changed, a charge must
enter or leave at the rate i=dg/dt=C(dv/dt). The
electric-field energy in a charged capacitor is w:%Cvz.
Thus

i = C(dv/dr);

_172
w=;Li

V= (I/C)Ji de; w :%Cvz
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It can be seen that there is a duality between the inductor
and the capacitor. Some typical cases of the behaviour of
pure parameters are given in Figures 2.3, 2.21 and 2.28.

A more concise representation of the behaviour of pure
parameters uses the differential operator p for d/d¢ and the
inverse 1/p for the integral operator: then

(a) Resistance: v=Ri=v/G; i=Gv=(1/R)v

(b) Self-inductance: v=Lpi, i=(1/Lp)v
Mutual inductance: e;=Liypir;  ex;= Lyipip

(¢) Capacitance: v=(1/Cp)i; i=Cpv

For the steady-state direct-current (d.c.) case, p=0.
For steady-state sinusoidal alternating current (a.c.), p =jw,
giving for L and C the forms jwL and 1/jwC where wiis
the angular frequency. In general, Lp and 1/Cp are the
operational impedance parameters.

3.2.1.3 Configuration

The assembly of sources and loads forms a network of
branches that interconnect nodes (junctions) and form
meshes. The seven-branch network shown in Figure 3.3
has five nodes (a, b, c, d, ¢) and four meshes (1, 2, 3, 4).
Branch ab contains a voltage source; the other branches
have (unspecified) impedance parameters. Inspection shows
that not all the meshes are independent: mesh 4, for example,
contains branches already accounted for by meshes 1, 2 and 3.
Further, if one node (say, ) is taken as a reference node, the
voltages of nodes a, b, ¢c and d can be taken as their p.d.s
with respect to node e. The network is then taken as having
b=7 branches, m=3 independent meshes and n=4
independent nodes. In general, m =5 — n.

3.2.2 Network laws

The behaviour of networks (i.e. the branch currents and
node voltages for given source conditions) is based on the
two Kirchhoff laws (Figure 3.4).

(1) Node law The total current flowing into a node is zero,
3i=0. The sum of the branch currents flowing into a
node must equal the sum of the currents flowing from it;
this is a result of the ‘particle’ nature of conduction
current.

(2) Meshlaw Thesum of the voltages around a closed mesh
is zero, Xv=0. A rise of potential in sources is absorbed
by a fall in potential in the successive branches forming the
mesh. This is the result of the nature of a network as an
energy system.

Figure 3.3 Network configuration

Figure 3.4 The Kirchhoff laws

The Kirchhoff laws apply to all networks. Whether the
evaluation of node voltages and mesh currents is tractable
or not depends not only on the complexity of the network
configuration but also on the branch parameters. These may
be active or passive (i.e. containing or not containing sources),
linear or non-linear. Non-linearity, in which the parameters
are not constant but depend on the voltage and/or current
magnitude and polarity, is in fact the normal condition, but
where possible the minor non-linearities are ignored in order
to permit the use of greatly simplified analysis and the
principle of superposition.

3.2.2.1 Superposition

In a strictly linear network, the current in any branch is the
sum of the currents due to each source acting separately, all
other sources being replaced meantime by their internal
impedances. The principle applies to voltages and currents,
but not to powers, which are current—voltage products.

3.2.3 Network solution

A general solution presents the voltages and currents every-
where in the network; it is initiated by the solution simulta-
neously of the network equations in terms of voltages,
currents and parameters.

The Kirchhoff laws can be applied systematically by use
of the Maxwell circulating-current process. To each mesh is
assigned a circulating current, and the laws are applied with
due regard to the fact that certain branches, being common
to two adjacent meshes, have net currents given by the super-
position of the individual mesh currents postulated. Gener-
alising, the network can be considered as either (i) a set of
independent nodes with appropriate node-voltage equations,
or (ii) a set of independent meshes with corresponding mesh-
current equations.

3.2.3.1 Mesh-current equations

This is a formulation of the Maxwell circulating-current
process. If source e.m.f.s are written as E, currents as [
and impedances as Z, then for the m independent meshes

Ey=hZyu+hZpn+ - E€lnZin
Ey=hZ0+hZy+ - ElnZom

En=&Zm + hZm + - € 1nZym

Here Zy1, Z2,..., Z, are the self-impedances of meshes
1, 2,..., m, ie. the total series impedance around each
of the chosen meshes; and Z, Z,,,, . . ., are the mutual imped-
ances of meshes 1 and 2, p and g¢,..., i.e. the impedances

common to the designated meshes.



The mutual impedance is defined as follows. Z,,, is the p.d.
per ampere of 7, in the direction of ,, and Z,, is the p.d. per
ampere of I, in the direction of I,. The sign of a mutual impe-
dance depends on the current directions chosen for the meshes
concerned. If the network is co-planar (i.e. it can be drawn on
a diagram with no cross-over) it is usual to select a single con-
sistent direction—say clockwise—for each mesh current. In
such a case the mutual impedances are negative because the
currents are oppositely directed in the common branches.

3.2.3.2 Node-voltage equations

Of the network nodes, one is chosen as a reference node to
which all other node voltages are related. The sources are
represented by current generators feeding specified currents
into their respective nodes and the branches are in terms of
admittance Y. Then for the n independent nodes

Ia = VnYan+ VIJYah+"'+ VnYnn
Iy =ViYoa + Vo Yoo+ -+ VY

Li=ViYua+ VYo +- -+ VY

Here Y., Yip, ..., Y, are the self-admittances of nodes a,
b,..., n, i.e. the sum of the admittances terminating on
nodes a, b,...,n;and Y, Y, . .., are the mutual admittances,
those that link nodes @ and b, p and ¢, ..., respectively, and
which are usually negative.

The mesh-current and node-voltage methods are general
and basic; they are applicable to all network conditions.
Simplified and auxiliary techniques are applied in special
cases.

3.2.3.3 Techniques

Steady-state conditions Transient phenomena are absent.
For d.c. networks the constant current implies absence of
inductive effects, and capacitors (having a constant charge)
are equivalent to an open circuit. Only resistance is taken into
account, using the Ohm law.

For a.c. networks with sinusoidal current and voltage,
complexor algebra, phasor diagrams, locus diagrams and
symmetrical components are used, while for a.c. networks
with periodic but non-sinusoidal waveforms harmonic analysis
with superposition of harmonic components is employed.

Transient conditions Operational forms of stimuli and
parameters are used and the solutions are found using
Laplace transforms.

3.2.4 Network theorems

Network theorems can simplify complicated networks, facil-
itate the solution of specific network branches and deal with
particular network configurations (such as two-ports). They
are applicable to linear networks for which superposition is
valid, and to any form (scalar, complexor, or operational) of
voltage, current, impedance and admittance. In the following,
the Ohm and Kirchhoff laws, and the reciprocity and compen-
sation theorems, are basic; star—delta transformation and the
Millman theorem are applied to network simplification; and
the Helmholtz-Thevenin and Helmholtz—Norton theorems
deal with specified branches of a network. Two-ports are dealt
with in Section 3.2.5.
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3.2.4.1 Ohm (Figure 3.2(a))

For a branch of resistance R or conductance G,

I =&#/R=4G; V=4&R=4G, R=V/I=&/G
Summation of resistances Ry, Ry,. .., in series or parallel gives

R=R +Ry+--vor G=1/(1/G1+1/Gy+--) <
R=1/(1/Ri+1/Ry+--)%r G=G1+Gr+ <

Series:
Parallel:

The Ohm law is generalised for a.c. and transient cases by
I1=V/|Z or I(p)=V(p)/Z(p), where p is the operator d/dz.

3.2.4.2 Kirchhoff (Figure 3.4)
The node and mesh laws are

Node: ij+ih+ <& =&

Mesh: e +ey+ - <&+ Zr+ - - <or Ye=&iZ

3.2.4.3 Reciprocity

If an e.m.f. in branch P of a network produces a current in
branch Q, then the same e.m.f. in Q produces the same
current in P. The ratio of the e.m.f. to the current is then
the transfer impedance or admittance.

3.2.4.4 Compensation

For given circuit conditions, any impedance Z in a network
that carries a current / can be replaced by a generator of
zero internal impedance and of e.m.f. E=—IZ. Further, if
Z is changed by AZ, then the effect on all other branches is
that which would be produced by an e.m.f. —/ A Z in series
with the changed branch. By use of this theorem, if the net-
work currents have been solved for given conditions, the
effect of a changed branch impedance can be found without
re-solving the entire network.

3.2.4.5 Star—delta (Figure 3.5)

At a given frequency (including zero) a three-branch star
impedance network can be replaced by a three-branch
delta network, and conversely. For a star Z,, Z;,, Z. to be
equivalent between terminals AB, BC, CA to a delta Z,, Z,,
Z3, it is necessary that

Za :ZSZI/Z; Zl :Zzl+Zl)+ZaZb/Zc
Z},:ZIZQ/Z; ZQZZ};-‘FZC-FZ/,ZC/ZQ
Z(. = ZzZ3/Z; Z3 = Z(» + Z(, + Z(.Z(,/Zb

where Z=Z7,+ Z,+ Z;. The general star—-mesh conversion
concerns the replacement of an n-branch star by a mesh of
1n(n — 1) branches, but not conversely; and as the number
of mesh branches is greater than the number of star
branches when n >3, the conversion is only rarely of use.

B C

Figure 3.5 Star—delta conversion
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Figure 3.6 The Millman theorem

3.2.4.6 Millman (Figure 3.6)

The Millman theorem is also known as the parallel-generator
theorem. The common terminal voltage of a number of
sources connected in parallel to a common load of impedance
Z is V=1I.Z, where I is the sum of the short-circuit
currents of the individual source branches and Z, is the
effective impedance of all the branches in parallel, including
the load Z. If E; and E, are the em.fis of two sources
with internal impedances Z; and Z, connected in parallel to
supply a load Z, and if 7} and I, are the currents contributed
by these sources to the load Z, then their common terminal
voltage V' must be

V= (I] +12)Z = [(E] — V)/Z] + (E2 — V)/ZQ]Z
whence
V(1/Z+1)Z) +1)Z2) = Ei | Z) + E2/ Z

The term in parentheses on the left-hand side of the equation
is the effective admittance of all the branches in parallel. The
right-hand side of the equation is the sum of the individual
source short-circuit currents, totalling I.. Thus V=I.Z,.
The theorem holds for any number of sources.

3.2.4.7 Helmholtz—Thevenin (Figure 3.7)

The current in any branch Z of a network is the same as if that
branch were connected to a voltage source of e.m.f. £, and
internal impedance Z,, where Ej is the p.d. appearing across
the branch terminals when they are open-circuited and Z,
is the impedance of the network looking into the branch
terminals with all sources represented by their internal
impedance.

In Figure 3.7, the network has a branch AB in which it is
required to find the current. The branch impedance Z is
removed, and a p.d. Ey appears across AB. With all sources
replaced by their internal impedance, the network presents
the impedance Z, to AB. The current in Z when it is replaced
into the original network is

I=FE/(Zo+Z)=

The whole network apart from the branch AB has been
replaced by an equivalent voltage source, resulting in the
simplified condition of Figure 3.1(a).

3.2.4.8 Helmholtz—Norton

The Helmholtz—Norton theorem is the dual of the Helm-
holtz-Thevenin theorem. The voltage across any branch Y of a
network is the same as if that branch were connected to a
current source I, with internal shunt admittance Y, where I is

A —OA
1
I
Network Z £y
{
B o8

Equivalent network

—OA A
— @ |
0B B

Figure 3.7 The Helmholtz—Thevenin theorem

the current between the branch terminals when short circuited
and Y, is the admittance of the network looking into the
branch terminals with all sources represented by their internal
admittance. Then across the terminals AB in Figure 3.7 the
voltage is

V=1I/(Yo+Y)=

Thus the whole network apart from the branch AB has been
replaced by an equivalent current source, i.e. the system in
Figure 3.1(b).

3.2.5 Two-ports

In power and signal transmission, input voltage and current
at one port (i.e. one terminal-pair) yield voltage and current
at another port of the interconnecting network. Thus in
Figure 3.8a voltage source at the input port 1 delivers to the
passive network a voltage V| and a current I;. The corres-
ponding values at the output port 2 are V, and I,.

3.2.5.1 Lacour

According to the theorem originated by Lacour, any passive
linear network between two ports can be replaced by a
two-mesh or T network, and in general no simpler form can be
found. Such a result is obtained by iterative star—delta conver-
sion to give the T equivalent; by one more star—delta conver-
sion the IT-equivalent is obtained (Figure 3.9). In general, the
equivalent networks are asymmetric; in some cases, however,
they are symmetric. It can be shown that a passive two-port
has the input and output voltages and currents related by

Vi=AV,+BL, and I, =CV,+ Dl

where ABCD are the general two-port parameters, constants
for a given frequency and with AD — BC=1. The conven-
tions for voltage polarity and current direction are those given
in Figure 3.8.

Passive
two-port

Figure 3.8 Two-port network
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Figure 3.9 T and II two-ports

3.2.5.2 T network

Consider the asymmetric T in Figure 3.9. Application of the
Kirchhoff laws gives

LI =L+ (V2 +IzZz)Y = V2Y+12(1 + YZz)<:
Vi=V(1+YZ)+ L(Z1+Zy+ Z12,Y )<=

Hence in terms of the series and parallel branch components

A=1+4YZ
B=Z\+72,+72,2,Y
cC=Y

D=1+Y7,

Multiplication shows that AD — BC=1.
For the symmetric T with Z; =Z,=1Z,

A=1+1yz=D, B=z+lvz* C=Y

3.2.5.3 I network

In a similar way, the general parameters for the asymmetric
case are

A=1+YZ; B=Z; C=Y 1+ YVL,+ Y\ Y, Z; D=1+YZ

which reduce with symmetry to
A=1+1YZ=D; B=Z, C=Y+1vZ

The values of the A BCD parameters, in matrix form,

A B
C D
are set out in Table 3.1 for a number of common cases.

3.2.5.4 Characteristic impedance

If the output terminals of a two-port are closed through an
impedance V>/I,=Z,, and if the input impedance V/I; is
then also Z,, the quantity Z is the characteristic impedance.
Consider a symmetrical two-port (4= D) so terminated: if
V1/1 is to be Z, we have

Vi VaA+ LB Vy(A+B/Z)«= , A+B/Z,
I ViC+hAd LA+CZ)< " A4+CZ

which is Z, for B/Zy= CZ,. Thus the characteristic impedance
is Zy=/(B/C). The same result is obtainable from the input
impedances with the output terminals first open circuited
(IL,=0) giving Z,, then short circuited (V,=0) giving Z.:
thus

Zoe = A/C§ Zy = B/A§ Zy = \/(Zoczsc = \/(B/C)¢
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3.2.5.5 Propagation coefficient

The parameters ABCD are functions of frequency, and Z,
is a complex operator. For the Z, termination of a sym-
metrical two-port (for which 4°>—BC=1) the input/output
voltage or current ratio is

Vi/Va=1/L=A+(BC) = A+ /(4 - 1)«
= exp(7) = exp(a +jB) <=

The magnitude of V| exceeds that of V, by the factor exp(a)
and leads it by the angle 3, where a1is the attenuation coeffi-
cient, (Oyis the phase coefficient and the combination
~v=a +]jBus the propagation coefficient.

3.2.5.6 Alternative two-port parameters

There are other ways of expressing two-port relationships. For
generality, both terminal voltages are taken as applied and
both currents are input currents. With this convention it is
necessary to write —/I, for I, in the general parameters so
far discussed. The mesh-current and node-voltage methods
(Section 3.2.4) give Vi =1z + Iz, etc., and [} =<1y +
V>y1,, etc., respectively. A further method relates V7 and I, to
I, and V, by hybrid (impedance and admittance) parameters.
The four relationships are then obtained as follows:

General Impedance

( 1 B £ 1 nozre\/h
DL D05)] (- 0 |

Admitfance ybri

(11)7 11 Mz)( 1) ( 1) <ém 1112)(11)
b 1 Y/ \ |2 2] 21 han ) \ 2

If the networks are passive, then zi; =z, yj»=y2; and
hi»=—hy;. If, in addition, the networks are symmetrical,
then A=D, z;; =25 and y;; =yy». If the networks are
active (i.e. they contain sources), then reciprocity does not

apply and there is no necessary relation between the terms of
the 2 x 2 matrix.

3.2.6 Network topology

In multibranch networks the solution process is aided by
representing the network as a graph of nodes and inter-
connections. The topology is the scheme of interconnec-
tions. A network is planar if it can be drawn on a closed
spherical (or plane) surface without cross-overs. A non-planar
network cannot be so drawn: a single cross-over can be elimin-
ated if the network is drawn on a more complicated surface
resembling a doughnut, and more cross-overs require closed
surfaces with more holes.
The nomenclature employed in topology is as follows.

Graph A diagram of the network showing all the nodes, with
each branch represented by a plain line.

Tree Any arrangement of branches that connects all nodes
together without forming loops. A tree branch is one branch of
such a tree.

Link A branch that, added to a tree, completes a closed
loop.

Tie set A loop of branches with one a link and the others tree
branches.

Cut set A set of branches comprising one tree branch, the
other branches being tree links. A cut set dissociates two main
portions of a network in such a way that replacing any one
element destroys the dissociation.
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Table 3.1 General ABCD two-port parameters

Network Matrix Network Matrix
o————0 Direct connection ol Loaded network
( ! O) ABco| Yo A+8Y, B
0 1 C+PYy D
o ° o—
Cross-connection . DY Shunted network
—1 0 Y, ABCD A B
0 -1 ot L o C+4Y, D+8BY,
o—{}o Series impedance
P4 -
1z ° Mutual inductance
o—0 0 1 L

A
T
I

z, v

Y
y
V4
A’ 1,
wZ Yi | /%4
o O
j SN
Z
Yy Y,
(o2 O

ABCD ABCD
1

0 *ijlz
—1/jwLi> 0
Shunt admittance

j
1 0\] ° Mutual inductance
Y 1 L1 .
] 0 —JwLiy
l/ij12 0
:;?

L network
1+&¥Z Z
Y 1

L network

1 Z
Y 1+&Z

T network
(Jl +&Z, Z+& +<¥le2>

Ideal transformer

Ni/Ny 0
0 N2/ N,

Y 1 +<€2,

Symmetrical T network

T+ YZ2 Z( +&Ez/4)
Y 1 +¥27/)2

II network

] 14+4,7 V4
Y|+ +& Yo Z 1+8Z

Symmetrical IT network

1 1+€z2 Z
V(1 +EZ/4) 1 +&Z)2

Cascaded networks

_A1A2 +8,C, A\B, +8,D,
U,C, +€,D, B,C,+B D,

cont’d
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Table 3.1 (continued)

Network Matrix

[ |

[ wr ]

Parallel networks

(41B> +<2B1)/(B) +B2) B\ B,/(B) +8>)
(A) —<t)(D1 —B,) B\ D, +B,D,
B, +8, B, +8,

l ABCD 2

C| +€;+

Symmetrical lattice network
<(Zl +&NZ1 —&2)  2Z1725/(Z) —&) )
20(Z) —<&) (Z) +&)/(Z) —&)

Before setting up the equations for network solution, some
guide is necessary in forming the proper number of indepen-
dent equations. Given the network (@) in Figure 3.10, the first
step is to draw the graph (b). Two of its possible trees are
shown in (¢). The trees are then used to set up the equations.

3.2.6.1 Network equations

Voltage The network diagram for the upper tree in
Figure 3.10(c) is drawn in (d). Specifying the tree-branch
voltages specifies also the voltages across the links. It is con-
venient to choose r as a reference node, leaving n=4&
independent nodes requiring n =&=voltage equations.

Current A tree has no closed paths. As the links are added
with specified currents, each creates one loop. Then the sum
of the links m is the number of currents to be evaluated. For a
network of b branches and n independent nodes, the number Figure 3.11  Conversion to a passive network
of independent meshes is m =&=—n.

3.2.6.2 Ports

It is often helpful to place the sources outside the network and
to regard their connections to the (now passive) remainder as
f i ports. Again, branches of interest can be taken outside and
+ used to terminate ports, as in Figure 3.11.

e, €2 1 A multiport network (Figure 3.12) has the following charac-
teristic definitions:

¥ ¥ (a) All ports but one are open-circuited: a voltage V| is
(a) (b) applied to port 1 and a current /; flows into it. Then
Vi/I is the open-circuit (o.c.) driving-point impedance

(c)

Figure 3.10 Network topology Figure 3.12 A multiport network



3/10 Network analysis

at port 1, V/1 is the o.c. transfer impedance from port 1 to
portk, and V/Vy is the o.c. voltage ratio of port k to port 1.

(b) All ports but one are short circuited: a current I,
(requiring a voltage V) is fed in at port 1. Then [,/V;
is the short-circuit (s.c.) driving-point admittance at port 1,
I;/V is the s.c. transfer admittance from port 1 to port k,
and I;;/I} is the s.c. current ratio of port k to port 1.

3.2.7 Steady-state d.c. networks

The steady state implies that energy storage in electric and
magnetic fields does not change, and only the resistance is
significant. In Figure 3.13 a source of constant e.m.f. E and
internal resistance r provides a current / at terminal voltage
V' to a network represented by an equivalent resistance R.
On open circuit (R=00), =0 and V=E. As R is reduced
the source provides a current /= E/(R+r)=(E— V)/r. The
greatest output power P=VI occurs for the condition
R=r; further reduction of R reduces the network power,
down to a short-circuit condition for R=0 and V'=0 when
the source power is dissipated entirely in r. The maximum-
power condition is utilised only with sources whose power
capability is very small.

3.2.8 Steady-state a.c. networks

An a.c. flows alternately in the specified positive direction and
then in the negative direction in a circuit, repeating this cycle
continuously. A graph of current or voltage to a time base
shows the waveform as a succession of instantaneous values. In
general there will be a maximum or peak value in both positive
and negative half-periods where the current or voltage is
greatest. The time for one complete cycle is the period T. The
number of periods per second is the frequency f=1/T.

An a.c. is produced by an alternating voltage. Two such
quantities may have a difference of phase, to which a precise
meaning can be given only when the quantities are both
sinusoidal functions of time.

3.2.8.1 Root-mean-square (r.m.s.) value

The numerical value assigned to an a.c. or voltage is normally
defined in terms of mean power in a pure resistor. An a.c.
of 1 A is that which produces heat energy at the same mean
rate as a direct current of 1 A in the same non-reactive resistor.
If i is the instantaneous value of an a.c. in a pure resistance R,

V=E P=El £
a i v Max
5 g s P=VI
& s
Current / V=0

Figure 3.13 A d.c. system

Table 3.2 Values of alternating quantities (peak = a)

Waveform ram.s.  Mean Ky K,
Sinusoidal alJ2  a/m) 111 141
Half-wave rectified sine  a/2 almp 1.57 2.0
Full-wave rectified sine aly2 a(2/m) 1.11 1.41
Rectangular a a 1.0 1.0
Triangular alJ3 a2 1.16 1.73

the heat developed in a time element dr is dw=?Rdr. The
mean rate (i.e. the mean power) over a complete period 7T is
P=(1/T)4 dw=(1/T)4 *Rdt = I’R
and 71is the r.m.s. value of the current. An alternating voltage is
defined in a similar way; the instantaneous power is v*/R, and
the mean is /R where V is the square root of the mean 1°.
In some cases the peak or the mean value of the current
or voltage waveform is more significant, particularly with
asymmetric, pulse or rectified waveforms. The value to be
understood by the term ‘mean’ is then obvious. In the
case of a symmetrical wave, the half-period mean value is
intended, as the mean over a complete period is zero. Table 3.2
gives the mean and r.m.s. values for a number of typical
waveforms, together with the values of

Form factor Ky = r.m.s./mean
Peak factor K, = peak/r.m.s.¢p

The techniques developed for the solution of steady-state
a.c. networks depend on the waveform. One technique applies
to purely sinusoidal quantities, another to periodic but non-
sinusoidal waveforms. In each case the network is assumed to
be linear so that the principle of superposition is valid.

3.2.9 Sinusoidal alternating quantities

For pure sinusoidal waveforms, a current can be expressed as
a function of time, i=1iy, sin(2nft) =iy, sin(wf), completing
f cycles in 1s with a period T=1/f. The quantity 27/ is
contracted to w, the angular frequency. The sine-wave shape
has the advantages that (i) it is mathematically simple and its
integral and differential are both cosinusoidal, (ii) it is a
waveform desirable for power generation, transmission and
utilisation, and (iii) it lends itself to phasor and complexor
representation.

The graph of a sinusoidal current or voltage of frequency
fcan be plotted to a time-angle base wt by use of trigonometric
tables. Alternatively it can be represented by the projection of
a line of length equal to the peak value and rotating counter-
clockwise at angular speed wiabout one end O. A stationary
line can represent the sine wave, particularly in relation to
other sine waves of the same frequency but ‘out of step’. Two
such waves, say v and i with peak values v, and i, respect-
ively, can be written

V=vpsinwt and = iysin(wt — @)=

and drawn as in Figure 3.14, the phase difference or phase
angle between them being ¢ rad. Then two lines, OA and OB,
having an angular displacement ¢, can represent the two
waves in peak magnitude and relative time phase.
Although developed from rotating lines of peak-value
length, it is more convenient to change the scale and treat
the lengths as r.m.s. values. The processes of addition and



Time-angle wt

/

27

Figure 3.14 Phasors

subtraction of r.m.s. values are performed as if the lines
were co-planar vector forces in mechanics. Physically, how-
ever, the lines are not vectors: they substitute for scalar quan-
tities, alternating sinusoidally with time. They are termed
phasors. Certain associated quantities, such as impedance,
admittance and apparent power, can also be represented by
directed lines, but as they are not sinusoids they are termed
complexors or complex operators. Both phasors and complex-
ors can be dealt with by application of the theory of complex
numbers. The definitions concerned are listed below.

Complexor A generic term for a non-vector quantity
expressed as a complex number.

Phasor A complexor (e.g. voltage or current) derived from
a time-varying sinusoidal quantity and expressed as a
complex number.

Complex operator A complexor derived for the ratio of two
phasors (e.g. impedance and admittance); or a complexor
which, operating on a phasor, gives another phasor (e.g.
V=1IZ, in which V and I are phasors, but Z is a complex
operator).

3.2.9.1 Complexor algebra

The four arithmetic processes for complexors are applications
of the theory of complex numbers. Complexor a in Figure 3.15
can be expressed by its magnitude a and its angle fywith
respect to an arbitrary ‘datum’ direction (here taken as
horizontal) as the simple polar form a=a / 0. Alternatively
it can be written as a=p+ jq, the rectangular form, in terms
of its projection p on the datum and ¢ on a quadrature axis at
right angles thereto: ¢ (as a scalar magnitude along the datum)
is rotated counter-clockwise by angle %mﬁad (90°) by the
operator j. Two successive operations by j (written as j°) give a
rotation of mwad (180°), making the original + ¢ into —g, in
effect a multiplication by —1. Three operations (j°) give —jg
and four give +¢. Thus any complexor can be located in the
complex datum—quadrature plane. Further obvious forms
are the trigonometric, a= a(cos 6 +j sin ), and the exponen-
tial, a= a exp(j#). Summarising, the four descriptions are:

Polar: a=alty
Rectangular:  a=p + jgq
a ] :
2 Ahiq
(e}
6 6
(o
Datum P

Figure 3.15 Complexors
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Exponential :
Trigonometric:

where a=/(p* +¢°) and = arctan(q/p).
Consider complexors a=p+jg=a /<aand b=r+js
=b /3. The basic manipulations are:

Addition a+b=(p+r)+jlqg+s)<=

a=aexp(jo)<=
a = a(cos Oyt jsin )<

Subtraction a—b= (p—r)+j(q—s)<=

Multiplication The exponential and polar forms are more
direct than the rectangular or trigonometric:

ab = (pr —qs) +j(qr + ps)<=
=<abexplj(adt B)] = ab / (ot f)«<=
Division Here also the angular forms are preferred:

a/b = [(pr+gs) +i(gr = ps))/ (P +57)«=

= (a/b)explj(ay- B)] = (a/b) / fep- B)<=
Conjugate The conjugate of a complexor a=p+jg
=al/apis a*=p—jg=al/(—a), the quadrature com-
ponent (and therefore the angle) being reversed. Then
ab* = ab / (anp- B)«<=
a*hb = ab /(B a)<
afa=aa* =d* =p* + ¢

The last expression is used to ‘rationalise’ the denominator
in the complexor division process.

3.2.9.2 Impedance and admittance operators

Sinusoidal voltages and currents can be represented by
phasors in the expressions V=IZ=1/Y and I=VY=V/Z.
Current and voltage phasors are related by multiplication
or division with the complex operators Z and Y. Series resist-
ance R and reactance jX can be arranged as a right-angled
triangle of hypotenuse Z =/ (R*+ X?) and the angle between
Z and R is § = arctan(X/R). The relation between Z and Y for
the same series network elements with Z= R+ jX is

L R—jX _ R-jX
T Z R4JX (R+HX)(R—-jX)= R+ X2
=R/Z*-j(X/Z*) =G —jB

where G and B are defined in terms of R, X and Z. The series
components R and X become parallel branches in Y, one
a pure conductance, the other a pure susceptance. Further,
a positive-angled impedance has, as inverse equivalent, a
negative-angled admittance (Figure 3.16).

The impedance and phase angle of a number of circuit
combinations are given in Table 3.3.

oo ZAx,
R XL

0

R
Y
—9 G
et n 25
XC Z XC BC G

Figure 3.16 Impedance and admittance triangles
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Table 3.3 Impedance of network elements at angular frequency wirad/s)
Impedance: Z=R+jX=\Z| / 0y 1Z| = J(R*+ X?) 0 =arctan(X/R)
Admittance: Y=1/Z=Y| /(—6) |Y|=[(R/Z*)*+ (X]Z*)}] 6= —arctan(X/R)
—_— N {L—3rr—
— 4 -~ A+ —}
R c L ¢, C, 1oy, 2 R L R C
Z: R 1/jwC jwL (C1+ CY)fjwC Cy jw(Ly+2L15) R+jwL R+1/jwC
0: 0 —7/2 +7/2 —m/2 +7/2 arctan(wL/R) —arctan(jwCR)
o SR ey S i & L
1 Lc
2 R L RS'C 3
. . wL +jR 1 —jwCR jwL
Z: jwL—1 R+j(wL —1jwC LR———
JwL=1jw0) L =1jw0) R [ +w2C2R - W’LC
0: £7/2 arctan[(wL — 1/wC)/R] arctan(R/wL) —arctan(wCR) +7/2
—F—
qp—_m_F— L ]
RLC I 4 r ¢ I 6
1/R — j(wC — 1JwL) R+ jw[L(1 — W*LC) — CR?<= A+]B

"(/RP + (wC — 1JwL) (1 - WLCY + PC2R2

(R+1? + (WL — 1/wC)?

A= Rr(R+r)+ L%+ Rjw*C?
B=wLi*~R*|wC—(L/C) (wL—1/wC)

0: —arctan[R(wC — 1/wL)] arctan {w[L(1 —w?® LC) — CR?/R} arctan (B/A)

Resonance conditions for LC networks numbered 1-6 above, for w=wy=1/\/(LC):
(1) 1Z2]=0,0=0; (2) [Z|=R, §=0; (3) | Z] =00, 0=0; (4) |Z|=R, w=0;
(5) |Z| = L/CR, § = —arctan(wCR) for R < wL; (6) |Z| =R (const.) for R=r=./(L/C)

Impedance and admittance loci If the characteristics of a
device or a circuit can be expressed in terms of an equivalent
circuit in which the impedances and/or admittances vary
according to some law, then the current taken for a given
applied voltage (or the voltage for a given current) can be
obtained graphically by use of an admittance or impedance
locus diagram.

In Figure 3.17(a), let OP represent an impedance Z =<«
R+jX and OQ the corresponding admittance ¥ =G —jB.
Point Q is obtained from P by finding first the geometric
inverse point QSuch that OQ’ = 1/OP to scale, and then
reflecting OQ’<across the datum line to give OQ and thus a
reversed angle —#, a process termed complexor inversion. If Z
has successive values Z, Z,, . . ., on the impedance locus, the
corresponding admittances Y|, Y>,..., lie on the admittance
locus. The inversion process may be point-by-point, but in
many cases certain propositions can reduce the labour:

(1) Inverse of a straight line—the geometric inverse of a
straight line AB about a point O not on the line is a circle
passing through O with its centre M on the perpendicular
OC from O to AB (Figure 3.17(b)). Then A’'Sis the
geometric inverse of A, B0f B, etc.; also, A is the inverse
of A’, B of B, etc.

Z—locus

X/\
\ /

(b)

Figure 3.17 Inversion

(2) Inverse of a circle—from the foregoing, the geometric
inverse of a circle about a point O on its circumference is a
straight line. If, however, O is not on the circumference,
the inverse is a second circle between the same tangents;
but the distances OM and OM’from the origin O to the
centres M and M'%of the circles are not inverses of each
other.



The choice of scales arises in the inversion process: for
example, the inverse of an impedance Z=150 / 70°X2 is
Y=0.02 / (=70°) S. It is usually possible to decide on a
scale by taking a salient feature (such as a circle diameter) as a
basis.

3.2.9.3 Power

The instantaneous power delivered to a load is the product of
the instantaneous voltage v and current i. Let v=v,, sin wt
and i =iy, sin(wt — ¢) as in Figure 3.18(a); then the instanta-
neous power is

P =} Vmim[cos ¢ — cos(2wt — ¢)]

This is a quantity fluctuating at angular frequency 2wiywith,
in general, excursions into negative power (i.e. that returned
by the load to the source). Over an integral number of
periods the mean power is

P = 1vminm cos gii= VIcos ¢

where V and 7 are r.m.s. values.
Now resolve i into the active and reactive components

ip = (im cos ¢) sinwt and iq = (im sin ¢) sin(wt — 3 )

as in Figure 3.18(b); then the instantaneous power can be
written

P = (vm (im cos ¢) sin® wt — v, (im sin ¢) sin wt cos wt
Over a whole number of periods the average of the first term is
P =1Lyyiy cos gy= VIcos ¢

giving the average rate of energy transfer from source to load.
The second term is a double-frequency sinusoid of average
value zero, the energy flow changing direction rhythmically
between source and load at a peak rate

Q =L vmimsingy= Vising
The power conditions thus summarise to the following:

Active power P The mean of the instantaneous power over
an integral number of periods giving the mean rate of energy
transfer from source to load in watts (W).

Reactive power Q  The maximum rate of energy interchange
between source and load in reactive volt-amperes (var).

Ny N\
¢

p=vi
A
K174 A4

(a) (b}

Figure 3.18 Active and reactive power
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Apparent power S The product of the r.m.s. voltage and
current in volt-amperes (V-A).

Both P and Q represent real power. The apparent power
S is not a power at all, but is an arbitrary product VI.
Nevertheless, because of the way in which P and Q are defined,
we can write

P + Q% = (VI)*(cos® ¢ sin” ¢) = (VI)?

whence S:\/(P2+ 0?), a convenient combination of mean
active power with peak power circulation.

Complex power The active and reactive powers can be
determined for voltage and current phasors by

S=P+jQ=VI* or S=V*I

using the conjugate of either 7 or V.

Power factor The ratio of active to apparent power,
P/S=cos ¢for sinusoidal conditions.

3.2.9.4 Resonance

A condition of resonance occurs when the load contains two
forms of energy-storing element (L and C) such that, at the
frequency of operation, the two energies are equal. The
reactive power requirements are then satisfied internally, as
the inductor releases energy at the rate that the capacitor
requires it. The source supplies only the active power demand
of the energy-dissipating load components, the load externally
appearing to be purely resistive.

Acceptor resonance The series RLC circuit in Figure 3.19(a)
has, at angular frequency w, the impedance Z= R+ jX,
where X is wL—1/wC, which for w=wy=1/\/(LC) is zero.
The impedance is then Z=R and the input current has
a maximum /I,=V/R, conditions of acceptor resonance.
Internally, large voltages appear across the reactive com-
ponents, viz.

VL = I()u)L = VWQ(L/R) and Vc = Io(l/u)()c) = V/u)()(CR)<:

The terms L/R and 1/CR are the time constants of the reactive
elements, and woL/R is the Q value of a practical inductor of

o
€
€

o
€

Figure 3.19 Resonance
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inductance L and loss-resistance R. The Q value may be large
(e.g. 100) for resonance at a high frequency.

Rejector resonance  This occurs in a parallel combination of L
and C, the energies circulating around the closed LC loop. If
in Figure 3.19(b) the resistance R is zero, the terminal input
admittance vanishes at angular frequency wy=1 /\/ (LO),
with wyC = 1/woL and an input susceptance B=0. Where the
circuit contains resistance R the resonance conditions are less
definite. Three possible criteria are: (i) wo= 1/\/ (LC), (i1)
the input admittance is a minimum, and (iii) the input
admittance is purely conductive. All three criteria are satisfied
simultaneously in the simple acceptor circuit, but differ in
rejector conditions; however, where resonance is an intended
property of the circuit, the differences are small.

Some expressions for resonance are given for six circuit
arrangements in Table 3.3.

3.2.10 Non-sinusoidal alternating quantities

Periodic but non-sinusoidal currents occur: (i) with non-sinu-
soidal e.m.f. sources, (ii) with sinusoidal sources applied to
non-linear loads, and (iii) with any combination of (i) and (ii).

3.2.10.1 Fourier series

Any univalued periodic waveform can be represented as a
summation of sine waves comprising a fundamental, where
frequency is that of the periodic occurrence, and a series of
harmonic waves of frequency 2, 3,..., n times that of the
fundamental. The Fourier series for a periodic function
y=f(x) takes either of the following equivalent forms:

() y=co+asin(x+ o)) +csinx+ay) +--- <=
(2) y=rco+aicosx +aycos2x + - - - + a, cos nx
+ by sinx + by sin2x + - - - + b, sinnx

where ¢, is a constant, c,,:\/(a,12+b,12) and «,=<

arctan (a,/b,). The coefficients of the terms are given by

ux’

co=(1/2m)4 f(x) dx =mean of the wave over one period
At

ay=(1/m)4 f(x)cos nx dx

by =(1/m)4 f(x)sin nx dx

These can be evaluated mathematically for simple cases. The
work may sometimes be reduced by inspection: thus ¢y =0 for
a wave symmetrical about the baseline; or only odd-order
harmonics may be present.

3.2.10.2 Analysis

The series for a range of mathematically tractable waveforms
are given in Table 1.10. For experimentally derived waveforms
there are several methods, but none yields the amplitude of
higher order harmonics without considerable labour, unless a
computer program is available.

A particular harmonic, say the nth, may be found by
superimposing n copies of the wave, displaced relatively
by 2n/n, 4x/n,..., and adding the corresponding ordinates.
The result is a wave of frequency # times that of the harmonic
sought (with the addition, however, of harmonics of orders
kn where k is an integer). The method gives also the phase
angle .

0

‘

‘1 2n »! _

Figure 3.20 Graphical harmonic analysis

B
m\ /ﬂﬂ’o
L1 |
12 Wm
1

A semi-graphical method is shown in Figure 3.20. The base
of a complete period 2miis divided into m parts, the cor-
responding ordinates being yo, v, V2, - .., V. Construct axes
OA and OB; set out the radii yy to y,, (=)o) at angles 0,
2nmw/m, 4nmim, ..., from the axis OA. Then project the
extremities horizontally (p) and vertically (¢), and take the
sum of the two sets of projections with due regard to their
sign. Then for the nth harmonic

2 m—1 2 m—1
a, :é;: and b, :é;:
) T

The labour is reduced if 27/m is a simple fraction of 27, for
then some groups of radii are coincident.

3.2.10.3 Power

The r.m.s. value of a current

i=1+isin(wt + ap) + i sin(Qwt + ) + -+ - <

is obtained from the square root of the average squared
value, resulting in

I=y(I§+if+id+ ) =G+ +5+-) <
where I; =1i/\/2, L=1/\/2, etc., are the r.m.s. values of

the individual harmonic components. The r.m.s. voltage is
obtained in a similar way.

Power
voltage
v =y sin(wf + ay) + v sinQwt + ap) + -+ - <=

The instantaneous power p in a circuit with an applied

producing a current
I=1 sin(wt+a1 — qf)]) + 1 sin(2wl+a2 — 4252) + &=
is the product vi: this includes (i) a series of the form

Pn)=

all terms of which have a fundamental-period average
%v,,i,, cos ¢,; and (ii) a series of the form

iy sin(nwt + ay,) sin(nwt + o, —

Vpig sin(pwt + o) sin(qut + oy — ¢g) <=

which, over a fundamental period, averages zero. Power is
circulated by a voltage and a current of different frequencies,
but the circulation averages zero. The mean (active) power is
therefore

P=1Lviicosgr +Livircosgy + -+ Lviscosg, + =
= Vilycos¢) + Valhcospy + -+ Vyl,cosp, + -+ - <=

where the capital letters denote component r.m.s. values.
Thus the harmonics contribute power separately.



Power factor The ratio of the active power P to the
apparent power S is

P/S=Vilicosdy + -+ Vyl,cosd, +---)/VI

This may be less than unity even with all phase angles zero if
the ratio V,,/I, is not the same for each component. Where the
applied voltage is a pure sinusoid of fundamental frequency
there can be no harmonic powers; the active power is
P="V11I cos ¢;. Then

P/S: (V][] COS@])/V1[: ([1/1)(305(;51

where  I/I=1/JU2+L*+---+1}) =6, the distortion
factor. The overall power factor is consequently 6wos ¢;. This
is typical of circuits containing non-linear elements.

3.2.11 Three-phase systems

A symmetrical m-phase system has m source e.m.f.s, all
of the same waveform and frequency, and displaced 27/m
rad or 1/m period in time; m is most commonly 3, but is
occasionally 6, 12 or 24.

Symmetric three-phase system 1In Figure 3.21(a) the sym-
metric sinusoidal three-phase system has source e.m.f.s in
phases A, B and C given by

€y =emsinwt; ey, = ey sin(wt —27/3); e, =epsin(wt —47/3)<

The instantaneous sum of the phase e.m.f.s (and also the
phasor sum of the corresponding r.m.s. phasors E,, E, and E.)
is zero.

Asymmetric three-phase system The asymmetric system in
Figure 3.21(b) has, in general, unequal phase voltages and
phase displacements. Such asymmetry may occur in machines
with unbalanced phase windings and in power supply systems
when faults occur; the usual method of dealing with asym-
metry is described in Section 3.2.12. Attention here is confined
to the basic symmetric cases.

27/3
Eb

(a) Symmetric

(b) Asymmetric

Figure 3.21 Three-phase systems
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3.2.11.1 Phase interlinkage

While individual phase sources can be used separately, they
are generated in the same machine and are normally inter-
linked. Using r.m.s. phasors, let the e.m.f. in a generator
winding XY be such as to drive positive current out at X: then
X is positive to Y and its e.m.f. Exy is represented by an arrow
with its point at X. The e.m.f. Eyx between terminals Y and
X is therefore —FExy. Further, when two windings XN and
YN have a common terminal N, the e.m.f.s are

XtoY: EXY = EXN — EYN
Y to X: ny = EYN — EXN = 7EXY

Common phase interconnections are shown in Figure 3.22.

3.2.11.2 Star

Let the phase e.m.f.s be E,,, Ey, and E., with an arbitrary
positive direction outward from the star-point N. Then the line
e.m.f.s are

Esp = Ean — Epn; Eve = Eon — Ecn; Eca = Ecn — Ean

These are of magnitude /3 times that of a phase e.m.f., and
provide a symmetric three-phase system of line e.m.f.s, with
E,p leading E,, by 30°. Thus E;=./3 Ep, and ;= Iy, the
subscripts 1 and ph referring to line and phase quantities

respectively.

A
c / Ecn
N
N
B8
Star Phase Line be
P
cQ O a Eab
E
120°
O
Delta P Phase/line
Ebc
A %E,
c 7
-
Ecn Ebn
Intercon- B Phase

nected star

Figure 3.22 Three-phase interconnections
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3.2.11.3 Delta

The line-to-line e.m.f. is that of the phase across which the
lines are connected. The line current is the difference of
the currents in the phases forming the line junction, so that the
relations for symmetric loading are E} = E,,, and [} = \/ 3 I

3.2.11.4 Interconnected star

A line-to-neutral e.m.f. comprises contributions from suc-
cessive half-phases and sums to %\/3 of a complete phase
e.m.f. The line-to-line e.m.f. is 14 times the magnitude of
a complete phase e.m.f. and the line current is numerically
equal to the phase current.

3.2.11.5 Power

The total power delivered to or absorbed by a polyphase
system, be it symmetric and balanced or not, is the algebraic
sum of the individual phase powers. Consider an m-phase
system with instantaneous line currents 7y, i, . . ., i, the alge-
braic sum of which is zero by the Kirchhoff node law. Let the
voltages of the input (or output) terminals, with reference
to a common point X, be vi — vy, v3—Vx,..., v, — Vx; then
the instantaneous powers will be (vi — vy )i, (v2— Vi, ...,
(Vyn —<%)i, which together sum to the total instantaneous
power p. There is no restriction on the choice of X; it can be
any of the terminals, say M. In this case v,,,— vs=v,, — v,,=0,
and the power summation has only m—1 terms. The average
power over a full period T is, therefore,

P= (I/T) [(Vl - V,,1)i1 +-+ (mel - Vm)l.mfl] dr

The first term of the sum in brackets represents the indication
of a wattmeter with /; in its current circuit and v; — v,,, across
its volt circuit, i.e. connected between terminals 1 and M. It
follows that three wattmeters can measure the power in a
three-phase four-wire system, and two in a three-phase three-
wire system. Some of the common cases are listed below.

(1) Three-phase, four-wire, load unbalanced—The connec-
tions are shown in Figure 3.23(a). Wattmeters Wy, W,

Figure 3.23 Three-phase power measurement

and W3 measure the phase powers separately. The total
power is the sum of the indications:

P=P + P+ P;

Three-phase, four-wire, load balanced—with the connec-
tions shown in Figure 3.23(a), all the meters read the
same. Two of the wattmeters can be omitted and the
reading of the remaining instrument multiplied by 3.
(3) Three-phase, three-wire, load unbalanced—two watt-
meters are connected with their current circuits in any
pair of lines, as in Figure 3.23(b). The total power is the
algebraic sum of the readings, regardless of waveform.
A two-element wattmeter summates the power automa-
tically; with separate instruments, one will tend to read
reversed under certain conditions, given below.
(4) Three-phase, three-wire, load balanced—with sinusoidal
voltage and current the conditions in Figure 3.23(c) obtain.
Wattmeters W, and W, indicate powers P, and P, where

Py = Vaply cos (30° + ¢) = V11, cos (30° + ¢)
Py = Vepl.cos(30° — ¢) = V11 cos (30° — ¢)
The total active power P= P;+ P, is therefore

P =V I[cos(30° + @) + cos (30° — ¢)] = \/3V11 cos pp
where cos ¢uis the phase power factor. The algebraic
difference is P;—P,= VI, sin ¢, whence the reactive
power is given by

0 = /3V I sin = \/3(P1 — P2)

and the phase angle can be obtained from ¢ =arctan
(Q/P). For ¢ =0 (unity power factor) both wattmeters
read alike; for ¢ =60°{power factor 0.51lag) W, reads
zero; and for lower lagging power factors W, tends to
read backwards.

@

~

The active power of a single phase has a double-
frequency pulsation (Figure 3.18). For the asymmetric
two-phase system under balanced conditions and a phase dis-
placement of 90°, and for all symmetric systems with m =3
or more, the total power is constant.

3.2.11.6 Harmonics

Considering a symmetrical balanced system of three-phase
non-sinusoidal voltages, and omitting phase displacements
(which are in the context not significant), let the voltage of
phase A be

Vo = vy Sin wt + vy sin 2wt + vy sin 3wt + - - &

Writing wt — %mﬁmd wt — %w, respectively, for phases B and
C, and simplifying, we obfain

vy, = vy sin wt + vy sin 2wt + v sin 3wt + -+ - <=

vp = vy sin (wf —2m) + vy sin 2(wt —4m) + vysin Bwr 4o &=

ve = vy sin (wf — i) + vy sin 2(wt —2m) + v3sin 3wi 4o =

The fundamentals have a normal 27/3 rad (120°) phase rela-
tion in the sequence ABC, as also do the 4th, 7th, 10th,...,
harmonics. The 2nd (and 5th, 8th, 11th,...) harmonics have
the 27/3 rad phase relation but of reversed sequence ACB.
The triplen harmonics (those of the order of a multiple of 3)
are, however, co-phasal and form a zero-sequence set.

The relation VI:\/ 3 Vpn in a three-phase star-connected
system is applicable only for sine waveforms. If harmonics
are present, the line- and phase-voltage waveforms differ
because of the effective phase angle and sequence of the har-
monic components. The nth harmonic voltages to neutral in
two successive phases AB are v, sin nwt and v, sin n(wt — %ﬂ'),



and between the corresponding line terminals the nth
harmonic voltage is 2v, sin n(%w). For triplen harmonics
this is zero; hence no triplens are present in balanced line
voltages because, in the associated phases, their components
are equal and in opposition. In a balanced delta connection,
again no triplens are present between lines: the delta forms a
closed circuit to triplen circulating currents, the impedance
drop of which absorbs the harmonic e.m.f.s.

3.2.12 Symmetrical components

Figure 3.21(a) shows the sine waves and phasors of a
balanced symmetric three-phase system of e.m.f.s of
sequence ABC. The magnitudes are equal and the phase
displacements are 27/3 rad. In Figure 3.21(b), the asym-
metric sine waveforms have also the sequence ABC,
but they are of different magnitudes and have the phase dis-
placements «, Syand ~. Problems of asymmetry occur in the
unbalanced loading of a.c. machines and in fault conditions
on power networks. While a solution is possible by the
Kirchhoff laws, the method of symmetrical components
greatly simplifies analysis.

Any set of asymmetric three-phase e.m.f.s or currents can
be resolved into a summation of three sets of symmetrical
components, respectively of positive phase-sequence (p.p.s.)
ABC, negative phase-sequence (n.p.s.) ACB, and zero
phase-sequence (z.p.s.). Use is made of the operator «,
resembling the 90°“operator j (Section 3.2.9.1) but implying
a counter-clockwise rotation of 27r/3 rad (120°). Thus

=1 £120° =4(-14jy/3)

ath=1/240° = (-1 -jy3)

ath=17360° =1+j0

1 + ot o= 0

A symmetric three-phase system has only p.p.s. components
E, = Eu; By = ol

whereas an asymmetric system (Figure 3.24) comprises the
three sets

Ec=aEyi <

z.p.sp Eao;  Evo = Eao;  Eco = Eao
p-ps¥ Eyy;  Epy = aﬁEa-%—; Eo =abyie
npsy By, 5 Ey =ak; E =ik, o

where the subscripts 0, + and — designate the z.p.s., p.p.s.
and n.p.s. components, respectively. The p.p.s. and the
n.p.s. components sum individually to zero. Therefore, if
the originating phasors E,, Ey, E. also sum to zero there
are no z.p.s. components; if they do not, their residual is
the sum of the three z.p.s. components.

The asymmetrical phasors have now been reduced to the
sum of three sets of symmetrical components:

Ey=Eu + Es + Ea e

Ey = Evo + Ebt + Eb—<

Ee=Ee+ Ee, + Ee e

The components are evaluated from the arbitrary identities
E,=Z+P+N

E, =Z+ odP + aN

E.=Z+aP+ N

where

Z=(E,+Ev+E)/3
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p.p.s z.p.s.

Figure 3.24 Symmetrical components

P = (E,+ aEy + odE)/3
N = (E, + ofEy, + aE.)/3

Figure 3.24 is drawn for an asymmetric system with
voltages E, =200, E,=100 and E.=400V, and phase-
displacement angles §=90°7 =120 and ~=150°F
In phasor terms,
E, =200 /0°=200+j0V
E, =100 / (—90°) =0 —jl00V
E. =400 / 150° = —346 +j200V
Then
Z = (200 —j100 — 346 + j200)/3 = —49 +j33 = Ey
P = (2004 87 +j50 + 347 +j200)/3 = 211 +j83 = Eq;
N = (200 — 87 +j50 — j400)/3 =38 — jl117 = Ep_«
The summation E,g+FE,, +E, =200+j0=FE,. The

p.p.s and n.p.s. components of E, and E. are readily
obtained.

3.2.12.1 Power

In linear networks there is no interference between currents
of different sequences. Thus p.p.s. voltages produce only
p.p-s. currents, etc. The total power is therefore

P= Pa + Pb +Pc
=3(Volpcos o + Vil cosdy + V_I_cosp_)<

This is equivalent to the more obvious summation of phase
powers
P =V,I,cos ¢, + Vi1, cos ¢y + Vil cos ¢

Symmetrical-component techniques are useful in the ana-
lysis of power-system networks with faults or unbalanced
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loads: an example is given in Section 3.3.4. Machine perfor-
mance is also affected when the machine is supplied from an
asymmetric voltage system: thus in a three-phase induction
motor the n.p.s. components set up a torque in opposition
to that of the (normal) p.p.s. voltages.

3.2.13 Line transmission

Networks of small physical dimensions and operated at low
frequency are usually considered to have a zero propagation
time; a current started in a closed circuit appears at every
point in the circuit simultaneously. In extended circuits,
such as long transmission lines, the propagation time is sig-
nificant and cannot properly be ignored.

The basics of energy propagation on an ideal loss-free line
are discussed in another section. Propagation takes place as a
voltage wave v accompanied by a current wave i such that
v/i=zy (the surge impedance) travelling at speed u. Both z,
and u are functions of the line configuration, the electric and
magnetic space constants ¢y and p, and the relative permit-
tivity and permeability of the medium surrounding the line
conductors. At the receiving end of a line of finite length, an
abrupt change of the electromagnetic-field pattern (and there-
fore of the ratio v/i) is imposed by the discontinuity unless the
receiving-end load is z,, a termination called the natural load
in a power line and a matching impedance in a telecommuni-
cation line. For a non-matching termination, wave reflection
takes place with an electromagnetic wave running back
towards the sending end. After many successive reflections
of rapidly diminishing amplitude, the system settles down
to a steady state determined by the sending-end voltage,
the receiving-end load impedance and the line parameters.

3.2.13.1 A.c. power transmission

The steady-state condition considered is the transfer of a
constant balanced apparent power per phase from a genera-
tor at the sending end (s) to a load at the receiving end (r) by
a sinusoidal voltage and current at a frequency f=w/2m.
The line has uniformly distributed parameters: a conductor
resistance r and a loop inductance L effectively in series,
and an insulation conductance g and capacitance C in
shunt, all per phase and per unit length. The series impe-
dance, shunt admittance and propagation coefficient per
unit length are z=r+jwl, y=g+jwC and viE= /(y2),
respectively. For a line of length / the overall parameters
are z/=Z7, yl=Y and [\/(yz) = \/(YZ) = ~I. The solution
for the receiving-end terminal conditions is in terms of
V/(YZ) and its hyperbolic functions as a two-port:

Vi=ViA+I1.B=V,cosh(\/YZ) + Lzgsinh(,/YZ)«<=
I, = V,C + I,D = V,(1/z) sinh(y/ YZ) + I, cosh(y/ YZ )<=

Using the hyperbolic series (Section 1.2.2) and writing
20 =/(Z/Y), we obtain for a symmetrical line

A=1+YZ/2+(YZ) /24 + - =D
B=Z[l+YZ/6+ (YZ)*/120+---] <
C=Y[1+YZ/6+(YZ) /120 +---] =

The significance of the higher powers of YZ depends on:
(i) the line configuration, (ii) the properties of the ambient
medium, and (iii) the physical length of the line in terms of
the wavelength A =u/f. For air-insulated overhead lines the
inductance is large and the capacitance small: the propaga-
tion velocity approximates to # = 3x 10> km/s (corresponding
to a wavelength A = 6000 km at 50 Hz), with a natural load z,

No load
V.=V.A

%

.
'

r

Figure 3.25 Transmission-line phasor diagram

of the order of 400-500 2. Cable lines have a low inductance
and a large capacitance: the permittivity of the dielectric
material and the presence of armouring and sheathing result
in a propagation velocity around 200 km/s, a surge impe-
dance below 1002, and the possibility (in high-voltage
cables) that the charging current may be comparable with
the load current if the cable length exceeds 25-30 km.

For balanced three-phase power transmission, the
general equations are applied for the line-to-neutral voltage,
line current and phase power factor. Phasor diagrams for
the load and no-load (/,=0) receiving-end conditions for
an overhead-line transmission are shown in Figure 3.25,
with V; as datum. On no load, Vy="V,A4, and as 4 has a
magnitude less than unity and a small positive angle «, the
phasor VA is smaller than V; and leads it by angle «: thus
V> Vs, the Ferranti effect. For the loaded condition, I.B is
added to VA4 to give V. Similarly V,C is added to I.D to
obtain 7.

The product VI, =I(V,—V.A) is the receiving-end com-
plex apparent power S;. Let Vlead V. by angle 6; then the
receiving-end load has the active and reactive powers P, and

0, given by
P, = (ViV:/B)cos(0 — 3) — (V2A/B) cos(Bis a)<=
O:(VsV:/B)sin(0 — ) + (V7 A/B) sin(B¢- a) <

where aiyand [yare the angles in the complexors 4 and B.
The importance of B (roughly the overall series impedance)
is clear.

Line chart Operating charts for a transmission circuit can
be drawn to relate graphically Vi, V;, P, and Q., using the
appropriate overall ABCD parameters (e.g. with terminal
transformers included).

Receiving-end chart A receiving-end chart gives active and
reactive power at the receiving end for V. constant (Figure
3.26(a)). The co-ordinates (x, y) and the radius (r) of the
constant-voltage circles are

x = —V2(4/B) cos(fi- a)<=

y= —Vrz(A/B) sin(fy- )<=
r=V,V:/B

where A and B are scalar magnitudes, and aiyand [ithe
angles in 4 and B. For a given V, the chart comprises a
family of concentric circles, each corresponding to a parti-
cular V. If a given receiving-end load is located by its
active and reactive power components, Vy is obtained
from the corresponding V circle.
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Figure 3.26 Line charts

Sending-end chart For a given Vy the sending-end chart
comprises a family of circles as shown in Figure 3.26(b),
each circle corresponding to a particular V.. Load points
outside the envelope of these circles cannot be supplied at
the V for which the chart is drawn.

3.2.13.2 Short line

For an overhead interconnector line the capacitive shunt
admittance is neglected, reducing the general parameters to
A=D=1, B=Z=R+jX and C=0. The operating con-
ditions are those in Figure 3.27, with a receiving-end voltage
V', (taken as reference phasor), a sending-end voltage Vg and
a load current [ at a lagging phase angle ¢uwith respect to
V: and having active and reactive components respectively
I, and 1. Then

Ve=Ve+ (I —jlg)(R+]X) <
=Vi+ bR+ 1X) +j(lpX —I,R) =V +v+ju

To a close approximation, v is the difference of the voltages
Vs and V., while u determines their phase difference
(or transmission angle). The regulation and angle are therefore
v/ Vs p-u. and 6 = arctan(u/V;) rad.

Suppose that V.=V then v=0 giving I,=—I,(R/X),
and  u=LX[1+(R/X)Y]  giving  O=arctan(l,/V)
[1+(R/X)*]. The consequences are that (i) for a receiving-
end active power P the load must be able to absorb a leading
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Figure 3.27 Operating conditions for a short transmission line

reactive power Q = P(R/X), and (ii) the transmission angle is
determined largely by X. If R/X'=0.5, typical of an overhead
line, then Q=0.5P and @#=arctan[l.25 X(I,/Vy)]. With
interconnector cables the R/X ratio is usually greater than
unity and shunt capacitance current is no longer negligible.

Independent adjustment of Vg and V; is not feasible, and
effective load control requires adjustment of v (e.g. by trans-
former taps) and of u (e.g. by quadrature boosting).

3.2.14 Network transients

Energy cannot be instantaneously converted from one form
to another, although the time needed for conversion can be
very short and the conversion rate (i.e. the power) high.
Change between states occurs in a period of transience
during which the system energies are redistributed in
accordance with the energy-conservation principle (Section
1.3.1). For example, in a simple series circuit of resistance R,
inductance L and capacitance C connected to a source of
instantaneous voltage v, the corresponding rates of energy
input, dissipation (in R) and storage (in L and C) are related
by

p=vi= Rii + [L(di/dt)i + (q/C)i]<

Dividing by the common current i and writing the capacitor
charge ¢ as the time-integral of the current gives the voltage
equation

v = Ri+ L(di/di) + (1/C) [i dr

and any changes in the parameters or in the applied voltage
demand changes in the distribution of the circuit energy.
The integro-differential equation can be solved to yield
both steady-state and transient conditions.

In practical circuits the system may be too complex for
such a direct solution; the following methods may then be
attempted:

(1) formal mathematics for simple cases with linear
parameters;

(2) simplification, e.g. by linearising parameters or by
neglecting second-order terms;

(3) writing a possible solution based on the known physical
behaviour of the system, with a check by differentiation;

(4) setting up a model system on an analogue computer; or

(5) programming a digital computer to give a solution by
iteration.

3.2.14.1 Classification

Where the system has only one energy-storage component,
single-energy transients occur. Where two (or more) different
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storages are concerned, the transient has a double-
(or multiple-) energy form. Transients may occur in the
following circumstances.

(1) Initiation—a system, initially dead, is energised.

(2) Subsidence—an initially energised system is reduced to a
zero-energy condition.

(3) Transition—a change from one state to another, where
both states are energetic.

(4) Complex—the superposition of more than one distur-
bance.

(5) Relaxation—transition between
reached, are themselves unstable.

states that, when

Further distinctions can be made, e.g. between linear and
non-linear parameters, neglect or otherwise of propagation
time within the system, etc. Attention here is mainly confined
to simple electric networks with constant parameters and, by
analogy (Section 1.3.1), to corresponding mechanical systems.

3.2.14.2 Transient forms

During transience, the current i for an impressed voltage
stimulus »(f) is considered to be the superposition of a
transient component /i, and a final steady-state current i, so
that at any instant i =i+ i;. Alternatively, the voltage v for
an impressed current stimulus #(z) is the summation
v=vs+v. The quantities i or v, are readily derived by
applying the appropriate steady-state technique. The form
of i, or v, is characteristic of the system itself, is independent of
the stimulus and comprises exponential terms k exp(Af) where
k depends on the boundary conditions. This is the case
because of the fixed proportionality between the stored energy
1 Lz and the rate of energy d1551pat10n R#*in an RL circuit;
dnd similarly for 1 Cv and v*/R in an RC circuit. Hence the
transient form can be obtained from a case in which the final
steady state is of zero energy, i.e. a subsidence transient.

The subsidence transient in a single-energy (first-order)
system having the general equation dy/d¢+ay=0 can be
found by substituting A¢bor d/d¢ to give Ay + ay =0, whence
A= —a. Then the solution is

= kexp(At) = kexp(—at)<=

a simple exponential decay as in Figure 1.2 of Section 1.2.2. For
a double-energy (second-order) system the basic equation is

d’y/de + a(dy/de) + by =€ or A+ a\gr b =&

The quadratic in Atvhas two roots, A\; and ),, and the
solution has a pair of exponential terms that depend on the
relation between a and b. For a multiple-energy (nth-order)
system there will be n roots. From Section 1.2.2 it will be
seen that exponential terms can represent oscillatory as well
as decay forms of response.

Single-energy system Consider the RL circuit shown in
Figure 3.28, subsequent to closure of the switch at 1=0.
The transient current form is obtained from L(di/d¢) + Ri=0,
or LAi+ Ri=0, giving A= —R/L. Then

iy =deexp[—t(R/L)] =4eexp(—t/T)<=

where 7= L/R is the time-constant. The final steady-state
current depends on the source VOltdgC v. In Figure 3.28(a),
with v="V, a constant direct voltage, i;= V/R. Immediately

after switching, with ¢ =0+, the current i is still zero because
the inductance prevents any instantaneous rise. Hence

i=d4+i =¥/R+kexp(—0)=V/R+k
so that k =—(V/R). From ¢ =0 the current is, therefore,
i =g+ i = (V/R)[1 - exp(—1/ )}

iy (a)
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Figure 3.28 Transients in an inductive—resistive circuit

(b)

The two terms and their summation are shown in Figure
3.28(a).

If, as in Figure 3.28(b), the source voltage is sinusoidal
expressed by v=v,, sin(wt — «) and again switching occurs
at r=0, the form of the transient current is unchanged, but
the final steady-state current is

is = (vm/Z)<sin(wt — a — ¢)<=
where Z=/(R*+w’L?) and ¢ =arctan(wL/R). At t =@+«
i =ds iy = (v /Z) sin(—at- §) + k =&

which gives k= —(v,,/4) sin(—a—¢). The final steady-state
and transient current components are shown in Figure
3.28(b) with their resultant. Initially the current is asym-
metric, but subsequently the decay of i; allows the current
to approach the steady-state condition.
If wL > R, then approximately ¢u=
closed at v=0 for which «=0. Then t

i = (vm/wL)[sin(wt — ) + 1]

which raises i to twice the normal steady-state peak when
t reaches a half-period: this is the doubling effect. However,
if the switch is closed at a source-voltage maximum, the
current assumes its steady-state value immediately, with
no transient component.

Summary for an RL circuit The transient current has a
decaying exponential form, with a value of k such that,
when it is added to the final steady-state current, the initial
current flowing in the circuit at =0 is obtained. (In both
of the cases in Figure 3.28 the initial current is zero.) Thus
if the initial circuit current is 10 A and the final current is
25 A, the value of kis —15A.

For the CR circuit in Figure 3.29, the form of the transi-
ent is found from Ri+ g/C=0; differentiating, we obtain

R(di/df) + (1/C)i=0 or RM4 1/C =4

from which A=—1/CR=—1/T, where T=CR is the time-
constant. Thus i, =k exp(—t/T). With the capacitor initially
uncharged and a source direct voltage } switched on at t=0,

I =4+ i =€+ kexp(—1t/T)<=

. Let the switch be
e current is
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Figure 3.29 Transients in a capacitive—resistive circuit

As this must be V/R at t=0+, then k=V/R, as shown
in Figure 3.29(a). In Figure 3.29(b) the initiation of a CR
circuit with a sine voltage is shown.

Summary for an RC circuit The transient current is a
decaying exponential k exp(—¢/7T). The initial current is
determined by the voltage difference between the voltage
applied by the source and that of the capacitor. (In Figure
3.29 the capacitor is in each case uncharged.) If this p.d. is
Vo, then the initial current is Vy/R.

Double-energy system A typical case is that of a series
RLC circuit. The transient form is obtained from L(di/df)
+ Ri+ q/C =0, differentiated to

d%i/de® + (R/L)(di/dr) + (1/LC)i =0

Thus A%+ (R/L)A + 1/LC =0 is the required equation, with
the roots

2 1 1/2
AL, A
N )
The resulting transient depends on the sign of the quantity
in parentheses, i.e. on whether R/2L is greater or less than
1/\/(LC). Four waveforms are shown in Figure 3.30.

(1) Roots real: R > 2,/(L/C). The transient current is uni-
directional and results from two simple exponential
curves with different rates of decay.

A

R> 2\/(L/C) R <2/(L/C)

~So k exp (—R/2L)t
-~ - (\

R=0 w,=1A/(LC)

R<2,/(L/C)

Figure 3.30 Double-energy transient forms
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(2) Roots equal: R=2./(L/C). This has more mathematical
than physical interest, but it marks the boundary
between unidirectional and oscillatory transient current.

(3) Roots complex: R < 2,/(L/C). The roots take the form
—a =+ jwy, and the transient current oscillates with the
interchange of magnetic and electric energies respect-
ively in L and C; but the oscillation amplitude decays
by reason of dissipation in R. With R =0 the oscillation
persists without decay at the undamped natural fre-
quency wy = 1/{/(LC).

Pulse drive The response of networks to single pulses
(or to trains of such pulses) is an important aspect of data
transmission. An ideal pulse has a rectangular waveform of
duration (‘width’) ¢,. It can be considered as the resultant of
two opposing step functions displaced in time by ¢, as in
Figure 3.31(a).

In practice a pulse cannot rise and fall instantaneously,
and often the amplitude is not constant (Figure
3.31(b)). Ambiguity in the precise position of the peak
value ¥, makes it necessary to define the rise time as the
interval between the levels 0.1 ¥}, and 0.9 V},. The tilt is the
difference between V, and the value at the start of the trail-
ing edge, expressed as a fraction of V.

The response of the output network to a voltage pulse
depends on the network characteristics (in particular its time-
constant 7') and the pulse width #,. Consider an ideal input

09 Vp - ; Tilt
Timet Y

Leading Trailing

edge edge

0.1Vp_

(a) (b)

Yo C R<tp CR>t
t /
]
CR>t,

CR<tp

Vi I CR>ID
I l‘_tp Yo ‘

(c) (d)

Figure 3.31 Pulse drive
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voltage V; of rectangular waveform applied to an ideal low-
pass series network (Figure 3.31(c)), the output being the
voltage vy across the capacitor C. Writing p for d/dz, then

vw l/pc 1 1
Vii R+1/pC  1+pCR 1+pT

where 7= CR is the network time-constant. This represents
an exponential growth vy= Vil —exp(—t/T)] over the
interval ¢,. The trailing edge is an exponential decay, with
t reckoned from the start of the trailing edge. Three typical
responses are shown. For CR < 1, the output voltage
reaches Vj; for CR >, the rise is slow and does not reach
Vi; for CR > t, the rise is almost linear, the final value is
small and the response is a measure of the time-integral of
Vi

With C and R interchanged as in Figure 3.31(d) to give a
high-pass network, the whole of V; appears across R at the
leading edge, falling as C charges. Following the input pulse
there is a reversed v, during the discharge of the capacitor.
The output/input voltage relation is given by

vo R _,pCR  pT

Vim R+1/pC~ 1+pCR ™ 1+pT

For CR > 1, the response shows a tilt; for CR < t, the
capacitor charges rapidly and the output v, comprises
positive- and negative-going spikes that give a measure
of the time-differential of V;.

3.2.14.3 Laplace transform method

Application of the Laplace transforms is the most usual
method of solving transient problems. The basic features
of the Laplace transform are set out in Section 1.2.7 and
Table 3.4, which gives transform pairs. The advantages of
the method are that: (1) any stimulus, including discontinu-
ous and pulse forms, can be handled, (2) the solution is
complete with both steady-state and transient components,
(3) the initial conditions are introduced at the start, and
(4) formal mathematical processes are avoided.

Consider the system in Figure 3.28(a). The applied direct
voltage V' has the Laplace transform V(s) = V/s; the opera-
tional impedance of the circuit is Z(s) = R+ Ls. Then the
Laplace transform of the current is

Veey 1y
1) =225’ Tt RiD<

The term V/L is a constant unaffected by transformation.
The term in s is almost of the form a/s(s + a). So, if we write

V a
I(s) = <
(5) aL s(s+ a)<

where a = R/L =1/T, the inverse Laplace transform gives
i(t) = (V/aL)[l — exp(—at)] = (V/R)[l — exp(—1/T)]«=

which is the complete solution. More complex problems
require the development of partial fractions to derive
recognisable transforms which are then individually
inverse-transformed to give the terms in the solution of i(¢).

3.2.15 System functions

It is characteristic of linear constant-coefficient systems that
their operational solution involves three parts: (i) the excita-
tion or stimulus, (ii) the output or response and (iii) the
system function. Thus in the relation I(s)= V(s)/Z(s) for
the current in Z resulting from the application of V, 1/Z(s)
is the system function relating voltage to current. For the simple
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Figure 3.32 System functions

electrical system shown in Figure 3.32(a) the system function
Y(s) relating V(s) to I(s) in I(s)=WV(s)Y(s) is Y(s)=
1/(R+ Ls+ 1/Cs). Different functions could relate the
capacitor charge or the magnetic linkage in the inductor to
the transform V(s) of the stimulus v(¢).

The mechanical analogue (Figure 3.32(b)) of this elec-
trical system, as indicated in Section 1.3.1, has a system trans-
fer function to relate force f{¢) to velocity u(¢) of the mass m
and one end of the spring of compliance k in the presence of
viscous friction of coefficient . Then F(s) and U(s) are the
transforms of f{(¢) and u(z), and the operational ‘mechanical
impedance’ has the terms ms, 1/ks and r. In general, an
input 6;(s) and an output 6(s) are related by a system trans-
fer function KG(s) (Figure 3.32(c)), where K is a numerical
or a dimensional quantity to include amplification or the
value of some physical quantity (such as admittance). The
transform of the integro-differential equation of variation
with time is expressed by the term G(s). The system is then
represented by the block diagram in Figure 3.32(c);
i.e. 05(5)/6i(s) = KG(s).

A number of typical system transfer functions for rela-
tively simple systems are given in Table 3.4.

The output of one system may be used as the input to
another. Provided that the two do not interact (i.e. the
individual transfer functions are not modified by the
connection) the overall system function is the product
[K1G(s)] x<K>Go(s)] of the individual functions. If the
systems are paralleled and their outputs are additively
combined, the overall function is their sum.

3.2.15.1 Closed-loop systems

In Figure 3.32, parts (a), (b) and (c) are open-loop systems.
However, the output can be made to modify the input by
feedback through a network K;G(s) as in (d). The signal

Or(s) = [KrGr(5)]00(5)<=

is combined with 6;(s) to give the modified input.

For positive feedback, the resultant input is o(s) = 6;(s) +<
0i(s), and the effect is usually to produce instability and
oscillation.
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Table 3.4 System transfer functions [the relation £ (t)/f;(t) of output to input quantity in terms of the Laplace transform Fa(s)/F1(s)]

System Transfer function

1 Electrical network

o—— "} 0 () Za(s)
vy Z1 z, D ve TVi(s)  Zi(s) +<a(s)
(e, O
2 Electrical network o t S Z210)] Z1(5)Z(s)
£y Ijzi ZQD Y2 D) Zi(s) +()
o + O
3 Feedback amplifier Va(s)  Za(s)
v 2 2 e 2
——0
4 Second-order system M 02(s) 1
J ‘) 1 01(s) 1 +2esT +42T2 T'= VUK
8,7 K FI e, ¢ =<E/2(JK)<

M A(s)= 1 +2esT +42T2
]_V_z c=4/2\/(MK)«<=

K .
5 Accelerometer % l Vals) = ul T=,(M/K)
=

6 Permanent-magnet generator

7 Separately excited generator T =<«/R
-0
0 K
8 Motor: armature control ﬂi% K. =4/ (FR +42) <=
V()< s(l +7)<=
-0, T =<4R/(FR +42)
) F 0,(s)<= k
9 Motor: field control J 0 2(5) = ° T, =<£/F,
k, —= Vi(s)<s(l+sT) (1 +sTh)<
LY 0, T, =<4/R
v voltage L inductance 0y angular displacement M mass
i current ke e.m.f. coefficient wp angular velocity J  inertia
Z  impedance ¢ damping coefficient a acceleration F viscous friction coefficient
R, r resistance T time-constant k, acceleration coefficient K stiffness
For negative feedback, the resultant input is the difference and the output closely follows the input in magnitude and
e(s) =8(s) — Oi(s), an ‘error’ signal. With the main system wave shape, a condition sought in servo-mechanisms and
KG(s) now relating etand 6, the output/input relation is feedback controls.

Go(s)af KG(s)<=

Oi(s)<= 1+ [KG(5)][KeGr(s)]<

Suppose that there is unity feedback KiGy(s)=< then if )

KG (s) is large In general, a system function takes the form numerator/

denominator, each a polynomial in s, relating response to
0o(5)/0i(s) = KG(s)/[1 +&G(s)| =< input stimulus. Two forms are

3.2.15.2 System performance
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o bys™ + bmflsmil + - &by

KG(s
(5) apS" + ay_1 8" 4 4 ap

_ bn(s—z1)(s—2z2) (s — zm)<=
an(S—Pl)(S _PZ) T (S _pn)<:

The response depends both on the system and on the stimu-
lus. Performance can be studied if simple formalised stimuli
(e.g. step, ramp or sinusoidal) are assumed; an exponential
stimulus is even more direct because (in a linear system) the
transient and steady-state responses are then both exponen-
tial. With the system function expressed in terms of the
complex frequency s=o + jwiit is necessary to express the
stimulus in similar terms and to evaluate the response as a
function of time by inverse Laplace transformation. The
response in the frequency domain (i.e. the output/input rela-
tion for sustained sinusoidal stimuli over a frequency range)
is obtained by taking s=jwiyand solving the complexor
KG(jw). Another alternative is to derive the poles (p) and
zeroes (z) in equation (3.2) above.

Thus there are several techniques for evaluating system
functions. Some are graphical and give a concise representa-
tion of the response to specified stimuli.

3.2.15.3 Poles and zeros

In equation (3.2), the numbers z are the values of s for
which KG (s)=0; for, if s is set equal to z; or z,,..., the
numerator has a zero term as a factor. Similarly, if s is set
equal to p; or p»,..., there is a zero factor in the denom-
inator and KG(s) is infinite. Then the z terms are the zeros
and the p terms are the poles of the system function. Except
for the term b,,/a,, the system function is completely speci-
fied by its poles and zeros.

Consider the network of Figure 3.33, the system function
required being the output voltage v, in terms of the input
voltage v;. This is the ratio of the paralleled branches R,L,C
to the whole impedance across the input terminals. Algebra
gives

KG(s) = &s+1)/(s* + 35 + l4s + 16)<=

s+ 1
(s+ 1.36)[s + (0.82 4 j3.33)][s + (0.82 — j3.33)]<

by factorising numerator and denominator. Thus there is one
zero for s=—1. There are three poles, with s=—1.36, and
—0.82+j3.33. These are plotted on the complex s-plane in
Figure 3.33. Poles on the real axis oiycorrespond to simple
exponential variations with time, decaying for negative and
increasing indefinitely for positive values. Poles in conjugate
pairs on the jwiaxis correspond to sustained sinusoidal
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Figure 3.33 Poles and zeros
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oscillations. If the poles occur displaced from the origin and
not on either axis, they refer to sinusoids with a decay or a
growth factor, depending on whether the term ous negative
or positive.

3.2.15.4 Harmonic response

This is the steady-state response to a sinusoidal input at
angular frequency w. When a sine signal input is applied to
a linear system, the steady-state response is also sinusoidal
and is related to the input by a relative magnitude M and a
phase angle «. The system function is KG(jw).

Consider again the network of Figure 3.33. Writing s = jwi)
and simplifying gives the phasor expression for V,/V; as

8(jwk 1)<
(16 — 3u?) + jw(14 — w?)
Plots of |[M| and / anjare shown in Figure 3.34(a). For w=0

the network is a simple voltage divider with V,/V;=0.5 and a
phase angle « = 0. For w = oo, the terminal capacitor effectively

KG(jw) = =|M| /oy
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Figure 3.34 Harmonic response



short circuits the output terminals so that V,/V;=0. At
intermediate frequencies the gain |M| rises to a peak at
w=23.3rad/s and thereafter falls toward zero. The phase
angle a/is small and positive below w=1, being always
negative thereafter, to become —180°<at infinite frequency.

Nyquist diagram The Nyquist diagram is a polar plot of
|M| /<=jover the frequency range (Figure 3.34(b)), for an
input V;=1+j0. The plot is particularly useful for feed-
back systems. If the open-loop transfer function is
plotted, and in the direction of increasing wiit encloses
the point (—1+j0), then when the loop is closed the sys-
tem will be unstable as the output is more than enough
to supply a feedback input even when ¥V;=0. The
Nyquist criterion for stability is therefore that the point
(—=1+4j0) shall not be enclosed by the plot.

Bode diagram The Bode diagram for the system shown
in Figure 3.33 is Figure 3.34(a) redrawn with logarithmic
ordinates of |M| and a logarithmic scale of w. Normally
the ordinates are expressed as a gain 20log |M| in deci-
bels. For the example being considered, M =0.5 for very
low frequencies, so that 20log |M|=—-6dB; for w=3.3
the amplitude of M is 1.4 and the corresponding gain is
+2.9dB; and at the two frequencies when the output and
input magnitudes are the same, M =1 and 20log
(1)=0dB. All these are shown in the Bode diagram
(Figure 3.34(c)). On the logarithmic frequency scale,
equal ratios of wiare separated by equal distances along
the horizontal axis. If successive values 0.5, 1, 2, 4,...,
are marked in equidistantly, their successive ratios 1/0.5,
2/1,..., are all equal to 2, so that each interval is a
frequency octave. Correspondingly the equispaced fre-
quencies 0.1, 1, 10, ..., express a frequency decade.

The phase-angle plot is drawn in degrees to the same
logarithmic scale of frequency.

An advantage of the Bode plot is the ease with which
system functions can be built up term by term. The product
of complex operators is reduced to the addition of the
logarithms of their moduli and phase angles; similarly the
quotient is reduced to subtraction. If the system function can
adequately be expressed in simple terms, the Bode diagram
can be rapidly assembled. Such terms are listed below.

(1) jw: represented by a line through w=1 and rising with
frequency at 6 dB per octave or 20dB per decade, and
with a constant phase angle o =90°

(2) 1/jw: as for jw, but falling with frequency, and with
a=-90°F

(3) 1+4jwT: a straight line of zero gain for frequencies up to
that for which wT'=1, and thereafter a second straight
line rising at 6dB per octave; the change of direction
occurs at the break point (Figure 3.35(a)).

(4) 1/(1 4+jwT): as for 1+ jwT, except that after the break
point the gain drops with frequency at 6 dB per octave.

Table 3.5 Gain and phase angle for 1+jwT
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In Figure 3.35(a) the true gain shown by the broken curve
is approximated by the two straight lines meeting at the
break point. The approximate and true gains, and the
phase angles, are given in Table 3.5 for the term 1+ jwT.
The error in the gain is 3dB at the break point, and 1 dB at
one-half and twice the break-point frequency, making cor-
rection very simple.

The uncorrected Bode plot for the system function

(1 +jw0.5)

_ e e
jw(1 4 jw0.25)*

KGGw) = K P

is shown in Figure 3.35(b). Term [1] is the same as in Figure
3.35(a). Term [2] is a straight line running downward

wT Gain (dB) Angle wT Gain (dB) Angle
() ()
Approx. True Approx. True
0 0.0 0 2 6 7.0 63.5
0.01 0 0.00 0.5 4 12 12.3 76
0.1 0 0.04 5.7 8 18 18.1 83
0.25 0 0.26 14 10 20 20.0 84
0.5 0 1.0 26.5 16 24 24.0 86.5
1.0 0 3.0 45 100 40 40.0 89.5
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through w=1 with a slope of 6 dB per octave. Term [3] has
a break point at w=4, but as it is a squared term its slope
for w > 4 is 12dB per octave. The full-time plot of gain is
obtained by direct superposition. The effect of the constant
K is to lift the whole plot upward by 20log (K). The
summed phase angles approach —90°at zero frequency
and —180°<at infinite frequency.

Nichols diagram The Nichols diagram resembles the
Nyquist diagram in construction, but instead of phasor
values the magnitudes are the log moduli. The point
(—=1+]0) of the Nyquist diagram becomes the point (0dB,
/—180°). The Nichols diagram is used for determining the
closed-loop response of systems.

3.2.16 Non-linearity

A truly linear system, in which effect is in all circumstances
precisely proportional to cause, is a rarity in nature. Yet
engineering analyses are most usually based on a linear
assumption because it is mathematically much simplified,
permits of superposition and can sometimes yield results
near enough to reality to be useful. If, however, the non-
linearity is a significant property (such as magnetic satura-
tion) or is introduced deliberately for a required effect (as in
rectification), a non-linear analysis is essential. Such
analyses are mathematically cumbersome. No general
method exists, so that ad hoc techniques have been applied
to deal with specific forms of non-linearity. The treatment
depends on whether a steady-state or a transient condition
is to be evaluated.

3.2.16.1 Techniques

Some of the techniques used are: (i) step-by-step solution,
graphical or by computation; (ii) linearising over finite
intervals; (iii) fitting an explicit mathematical function to
the non-linear characteristic; and (iv) expressing the non-
linear characteristic as a power series.

Step-by-step solution Consider, as an example, the growth
of the flux in a ferromagnetic-cored inductor in which the
inductance L is a function of the current 7 in its N turns.
Given the flux magnetomotive-force (m.m.f.) characteristic,
and the (constant) resistance r, the conditions for the sud-
den application of a constant voltage V are given by

V =i+ d(Li)/dt ~i + N(AD/Ar)<=

which is solved in suitable steps of At, successive currents i
being evaluated for use with the magnetic characteristic to
start the next time-interval.

Linearising A non-linear characteristic may be approxi-
mated by a succession of straight lines, so that a piecemeal
set of linear equations can be applied, ‘matching’ the condi-
tions at each discontinuity.

For ‘small-signal’ perturbations about a fixed quiescent
condition, the mean slope of the non-linear characteristic
around the point is taken and the corresponding parameters
derived therefrom. Oscillation about the quiescent point can
then be handled as for a linear system.

Explicit function For the resistance material in a surge
diverter the voltage—current relationship v=ki* has been
employed, with x taking a value typically between 0.2 and 0.3.

The resistance-temperature relationship of a thermistor,
in terms of the resistance values R; and R, at corresponding
absolute temperatures 7' and 7T, takes the form

Ry =Ry exp(k/ T2 — k/Ti)<=

Several functions, such as y =« sinh (bx), have been used as
approximations to magnetic saturation excluding hysteresis.
A static-friction effect, of interest at zero speed in a control
system, has been expressed as y =k(sgn x), i.e. a constant
that acts against the driving torque.

Series A typical form is y=ap+a; x+ax* + -+ a,x",
where the coefficients a are independent of x. Such a series
may have a restricted range, and the powers limited to even
orders if the required characteristic has the same shape
for both negative and positive y. A second-degree series
y=do+ a,x + ax? can be fitted through any three points
on a given function of y, and a third-degree expression
through any four points. However, the prototype character-
istic must not have any discontinuities.

Rational-fraction expressions have also been developed.
The open-circuit voltage of a small synchronous machine
in terms of the field current might take the form
v=(274+0.006/)/(1 +0.03i). Similarly, the magnetisation
curve of an electrical sheet steel might have the B-H
relationship

H = B(426 — 7608 + 440B%)/(1 — 0.80B + 0.17B8)«<
with hysteresis neglected. An exponential series
B =<l —exp(—bH)] + ¢[l —exp(—dH)| + -+ + poH

has been suggested to represent the magnetisation char-
acteristic of a machine, the final term being related to the
air gap line.

Non-linear characteristics Figure 3.36 shows some of
the typical relations y =f{x) that may occur in non-linear
systems. Not all are analytic, and some may require step-
by-step methods.

The simple relations shown are: (a) response depending
on direction, as in rectification; (b) skew symmetry, showing
the effect of saturation; and (c) negative-slope region, but
with y univalued.

The complex relations are: (d) negative-slope region,
with y multivalued; (e) build-up of system with hysteresis,
unsaturated; (f) toggle characteristic, typical of idealised
saturated hysteresis; and (g) backlash, with y taking any
value between the characteristic limit-lines.

(a) (b)

(d) (e) (f)

Figure 3.36 Typical non-linear characteristics



3.2.16.2 Examples

A few examples of non-linear parameters and techniques
are given here to illustrate their very wide range of interest.

Resistors  Thermally sensitive resistors (thermistors) may
have positive or negative resistance-temperature coeffi-
cients. The latter have a relation between resistance R and
absolute temperature 7" given by R, = Ry exp [b (1/T, — 1/T7)).
They are made from oxides of the iron group of metals
with the addition of small amounts of ions of different
valency, and are applied to temperature measurement and
control. Thermistors with a positive resistance-temperature
coefficient made from monocrystalline barium titanate have
a resistance that, for example, increases 100-fold over the
range 50-100°C; they are used in the protection of machine
windings against excessive temperature rise.

Voltage-sensitive resistors, made in disc form from silicon
carbide, have a voltage—current relationship approximating
to v=ki”, where Sipanges from 0.15 to 0.25. For 3=0.2 the
power dissipated is proportional to v°, the current doubling
for a 12% rise in voltage.

Inductors The current in a load fed from a constant
sinusoidal voltage supply can be varied over a wide range
economically by use of a series inductor carrying an additional
d.c.-excited winding to vary the saturation level and hence
the effective inductance. The core material should have a
flux-m.m.f. relationship like that in Figure 3.36(f). Grain-
oriented nickel and silicon irons are suitable for the inductor
core. A related phenomenon accounts for the in-rush cur-
rent in transformers.

Describing function In a non-linear system a sinusoidal
drive does not produce a sinusoidal response. The describing-
function technique is devised to obtain the fundamental-
frequency effect of non-linearity under steady-state (but not
transient) conditions.

Consider a stimulus x=/h cos wt to give a response
y=£(t). As non-linearity inevitably introduces harmonic
distortion, y can be expanded as a Fourier series
(Section 1.2.5) to give

y =<ep + aj coswt + ap cos 2wt + - - - <
+ by sinwt + by sin 2wt + -+ - <

The components a; cos wt and by sin wt are regarded as the
‘true’ response, with a gain factor (a;+jb;)/h, the other
terms being the distortion. The gain factor is the describing
function. Let y=ax+ bx* with x=/h cos wr; applying the
expansion gives the fundamental-frequency term
¥ = (a+ 3bh*)hcoswt. The describing function is therefore
a +3bh?, which is clearly dependent on the magnitude 4 of
the mput. Thus the technique consists in evaluating the
Fourier series for the output waveform for a sinusoidal
input, and finding therefrom the magnitude and phase
angle of the fundamental-frequency response.

Ferroresonance The individual r.m.s. current—voltage
characteristics of a pure capacitor C and a ferromagnetic-
cored (but loss-free) inductor L for a constant-frequency sinu-
soidal r.m.s. voltage V are shown in Figure 3.37. With L and
C in series and carrying a common r.m.s. current /, the applied
voltage is V=1V, — V. At low voltage V; predominates,
and the 7— V relationship is the line OP, with 7 lagging V'
by 90°. At P, with V=V, and I= I, the system is at a limit of
stability, for an increase in V results in a reduction in
Vi — Ve. Atacurrent level Q the difference is zero. The current
therefore ‘jumps’ from I to a higher level 7; (point R),
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still with V= V/,. During the rapid rise there is an interchange
of stored energy, and for V' >, the circui