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14.1 Introduction 

14.1.1 Analog and digital circuits 

Signals in process control are conventionally transmitted as 
a pneumatic pressure or electrically as a voltage or current. 
These signals are said to be continuously variable in that 
they can take any value between the two extreme limits. 
Such systems are called analog systems. 
Digital circuits are concerned with signals that can only 

take certain values. Most digital circuits deal with electrical 
signals that can only have two values; 5 V or 0 V for example. 
Many circuits are inherently of this type, a light can be on 
or off, a valve open or shut, a motor running or stopped. 

14.1.2 Types of digital circuits 

Digital applications can, in general, be classified into three 
types. The simplest of these are called combinational logic 
(or static logic), and can be represented by Figure 14.1. 
Such systems have several digital inputs and one or more 
digital outputs. The output states are uniquely defined for 
every combination of input states, and the same input com-
bination always gives the same output states. 
A sequencing logic system is superficially similar to Figure 

14.1 but the output states depend not only on the inputs but 
also on what the system was doing last (i.e. its previous 
state). Sequencing systems therefore have memory and 
storage elements. A very simple example is the motor starter 
of Figure 14.2(a). The start input causes the motor to start 
running and keep running even when the start signal is 
removed. The stop input stops the motor. The action is 
summarised on Figure 14.2(b). Note that with neither signal 
present the motor could be running or stopped dependent 
on which signal occurred last; i.e. the output state is not 
defined solely by the present input states. 
The final group of digital systems uses digital signals to 

represent, and manipulate, numbers. Such systems cover the 
range from simple counters and digital displays to complex 
arithmetic and computing circuits. 

Figure 14.1 Representation of a combinational logic system. The 
output states are defined only by the input state 

14.1.3 Logic gates 

The simplest digital device is the electromagnetic relay, 
and it is useful to describe some of the fundamental ideas 
in terms of relay contacts. In Figure 14.3(a), the coil Z will 
energise when contact A and contact B and contact C are 
made. The series connection of contacts performs on AND 
function. 
Similarly, in Figure 14.3(b) the coil Z will energise when 

contact A or  contact B or  contact C are made. The parallel 
connection of contacts performs an OR function. 
In Figure 14.3(c), coil Z is energised when the push but-

ton is pressed. A normally closed contact of Z controls coil 
Y. When Z is energised, Y is de-energised and vice versa. 
The normally closed contact can be said to invert the state 
of its coil. 

Figure 14.3 Simple relay logic: (a) AND combination, relay Z is 
energised when A & B & C are all energised; (b) OR combination, 
relay Z is energised if A or B or C is energised; (c) Inversion, relay Y is 
energised when PB1 is not made 

Figure 14.2 A simple sequencing system: (a) representation of a start/stop motor starter; (b) operation, the output depends not only on the input 
state, but also on the last operation 
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Combinational logic circuits are built round combina-
tions of AND, OR and INVERT circuit. In Figure 14.4(a), 
for example, Z will be energised for: 

(A not energised) AND (B energised OR C energised) 

Such verbal descriptions are impossibly verbose for more 
simplex combinations. Circuit operations are more conveni-
ently expressed as an equation. Normally closed contacts 
are represented by a bar over the top of the contact name 
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(a) (b)�(e.g. A, verbalised as A bar). The circuit of Figure 14.4(a) 
can then be represented as: 

Z �( �A AND �B OR C�(
Similarly the circuit of Figure 14.4(b) (commonly used for 

stairwell lighting) can be represented by: 
� �Z ��A AND B� OR �A AND B�(

AA Z& 
B 

Z 
B 

(c) 
(d)These are known as Boolean equations, a topic discussed 

further in Section 14.3.3. 
Figure 14.5 A simple diode based AND Gate: (a) circuit; (b) truth 

(typically 10 to 20 operations per second), bulky and power table; (c) logic symbol; (d) BS logic symbol 

hungry. Electronic circuits performing similar functions are 

Relays can perform all logic functions but are slow 

called logic gates. These work with signals that can only 
have two states. A signal in CMOS logic, for example, can 
be at 12 V or 0 V and could represent a limit switch made or 
open. The two logic states can be called high/low, on/off, 
true/false and so on. The usual convention, however, is to 
call the higher voltage `1' and the lower voltage `0'. For a 
CMOS gate, therefore, 12 V is 1 and 0 V is 0. 
Figure 14.5(a) shows the circuit of a simple AND gate. 

Neglecting diode drops, the output Z will be equal to the 
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lower of the two input voltages. In other words, it will be a 1 (a) (b) 
if, and only if, both inputs are 1. This can be represented by 
Figure 14.5(b) (which is  called  a  truth table). On circuit dia-
grams it is clearer to use logic symbols rather than the actual 
circuit diagram. The symbol for an AND gate is shown on 
Figure 14.5(c); the output Z being 1 when  A AND B are both 1. 
On Figure 14.6(a) the output Z will be equal to the higher 
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(c) (d) 

Figure 14.6 A simple diode based OR gate: (a) circuit; (b) truth table; 
(c) logic symbol; (d) BS logic symbol 

Figure 14.6(b). The logic symbol for an OR gate is shown 
on Figure 14.6(c). 
The invert function is given by the simple saturating tran-

sistor of Figure 14.7(a). When A is 0, the transistor is turned 
off and the output Z is pulled to a 1 state by the collector 
load resistor. When A is 1, the transistor is saturated on 
taking Z to 0 V; a 0. The circuit behaves as the truth table 
of Figure 14.7(b) and has the logic symbol of Figure 14.7(c). 
Combinational logic circuits can be drawn purely in 

terms of AND gates, OR gates and inverters. The stairwell 
lighting circuit of Figure 14.4(b) is drawn with logic symbols 
on Figure 14.8(a). This behaves as the truth table of Figure 
14.8(b) which shows that Z is 1 if only one input is 1. This 
circuit is known as an Exclusive OR and is sufficiently com-
mon to merit its own logic symbol shown on Figure 14.8(c). 
If an inverter is used after an AND gate as Figure 14.9(a), 

the truth table of Figure 14.9(b) is produced. This arrange-
ment is called a NAND gate (for NOT-AND) and has the 
logic symbol of Figure 14.9(c). The NAND gate is probably 
the commonest logic gate. 
Adding an inverter to an OR gate as Figure 14.10(a) gives 

the truth table of Figure 14.10(b). This is known as a NOR 
gate (for NOT-OR) and is given the logic symbol of Figure 
14.10(c). 

of the two inputs (again neglecting diode drops). Z will 
therefore be 1 if either input is 1 giving the truth table of 

Figure 14.4 More complex relay logic: (a) Z is energised when (A is 
not energised) AND (B is energised OR C is energised); (b) Stairwell 
lighting circuit. A and B are the switches at the top and bottom of the 
stairs. Changing either switch will change the state of relay Z 
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Figure 14.9 A NAND gate: (a) circuit; (b) truth table; (c) logic symbol; 
(d) BS logic symbol 

(c) (d) 

Figure 14.10 A NOR gate: (a) circuit; (b) truth table; (c) logic symbol; 
(d) BS logic symbol 

The delay is called the propagation delay and is defined 
from the mid point of the input signal to the mid point of 
the output signal. Typical values are around 5 nS for TTL. 
The edge speeds are defined by the rise time (for the 0 to 1 

edge) and the fall time (for the 1 to 0 edge). These are meas-
ured between the 10% and 90% points of the output signal. 
Typical values are 2 nS for TTL. 
Propagation delays and rise/fall times determine the max-

imum speed at which a logic family can operate. TTL can 
operate in excess of 10 MHz, basic CMOS around 5 MHz 
and ECL at over 500 MHz (although considerable care 
needs to be taken with board layout at speeds over 10 MHz). 

14.2 Logic families 

14.2.1 Introduction 

Most logic circuits are constructed from integrated circuits, 
and have high operating speed and well defined levels. 
Two logic families (TTL and CMOS) are widely used in 
industrial applications and a third family (ECL) may be 
encountered where very high speed is required. Before 
these are described, we must first examine how the various 
factors of a logic gates performance are specified. 

14.2.2 Speed 

A logic gate does not respond instantly to a change at its 
input. For infinitely fast input signals the output will be 
delayed and the edges slowed as shown on Figure 14.11. 
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Figure 14.7 A transistor inverter: (a) circuit; (b) truth table; (c) logic 
symbol; (d) BS logic symbol 

(a) (b)
Note that the logic symbols for NAND/NOR gates are 

similar to those of the AND/OR gates with the addition of a 
small circle on the output. The circle denotes an inversion 
operation. 
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Figure 14.8 An Exclusive OR (XOR) gate: (a) circuit; (b) truth table; (c) logic symbol; (d) BS logic symbol 
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Figure 14.11 Speed definitions: (a) propagation delay (tpd); (b) rise and fall times (tr and tf) 

Power consumption is related to speed, as increased speed 
is obtained by reducing RC time constants formed by stray 
capacitance, and by using non saturating transistors. CMOS, 
for example, has a power consumption of about 0.01 mW per 
gate compared with ECL's figure of 60 mW/gate. 

14.2.3 Fan in/fan out 

The output of a logic gate can only drive a certain load and 
remain within specification for speed and voltage levels. 
There is therefore a maximum number of gate inputs a given 
gate output can drive. A simple gate input is called a standard 
load, and is said to have a fan in of one. A gate output's drive 
capability is called its fan out, and is defined in unit loads. 
A TTL gate output, for example, can drive ten standard gate 
inputs and correspondingly has a fan out of ten. 
Some inputs appear as a greater load than a standard 

gate. These are defined as a fan in of an equivalent number 
of standard gate inputs. An input with a fan in of three, 
for example, looks like three gate inputs. Obviously the 
sum of all the fan in loads connected to a gate output must 
not exceed the gate's fan out. 

14.2.4 Noise immunity 

Electrical interference may cause 1 signals to appear as 0 
signals and vice versa. The ability of a gate to reject noise 
is called its noise immunity. Defining noise immunity is more 
complex than it might at first appear, but the method 
usually adopted is that shown on Figure 14.12(a). The volt-
ages given are those for a TTL gate which has a nominal 1 V 
of 4.5 V and a nominal 0 Vof 0 V. 

(V
V
V

V

Next we define how far an output 1 can fall to (2.4 V) and 
a 0 rise to (0.4 V). These are respectively termed VOH and 
OL. Finally we define how low a gate's input 1 can fall and 

an input 0 rise without allowing its output to go between 
OH and VOL. These voltages are called VIH (2.0 V) and 
IL(0.8 V). The noise immunity is then the smaller of 
OH �VIH) or  (VIL �VOL). For TTL the figure is 0.4 V. 

This is a worse case value, a more typical noise immunity 
is about 1.2 V. 
A figure sometimes quoted is the AC noise margin. This 

is defined as the largest pulse that will not propagate down 
a chain of gates similar to Figure 14.12(b). This gives a 
more favourable result than Figure 14.12(a), but is a more 
realistic test. 

14.2.5 Transistor transistor logic (TTL) 

TTL is NAND based logic, with the circuit of a 2 input 
NAND gate being shown on Figure 14.13. The rather odd 
looking dual emitter transistor can be considered as two 
transistors in parallel or three diodes as shown. 

R
If both inputs are high, Q2 is turned on by current from 
1 supplying base current to Q3. The output is therefore 

nominally 0 V. With either input low, Q1 is turned on, Q2 
turned off and Q4 pulls the output high to a nominal 4.5 V. 
The output transistors Q3, Q4 are called a totem pole 

output and play a significant part in increasing the operating 
speed. When the output is a 0, Q3 acts as a saturated 
transistor. When the output is a 1, Q4 acts as an emitter 
follower. Both states have low output impedances which 
reduce RC time constants from stray capacitance. 
There are at least six versions of TTL with differing speeds 

and power consumption. Schottky versions (with S as part of 
the suffix) use Schottky diodes within the gate to reduce hole 
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Figure 14.12 Definitions of noise immunity: (a) D.c. noise margin. The voltages shown are for standard TTL; (b) A.c. noise immunity. The test sees 
what is the smallest pulse amplitude that will propagate through the chain 

Figure 14.13 Transistor transistor logic (TTL) circuit diagram the multi-emitter transistor can be considered to act as two transistors in parallel or 
three diodes 

storage delays. All TTL are members of the so called 74 
series (originally conceived by Texas Instruments) and have 
the same pin arrangements on the ICs. They can also be 
intermixed although care must be taken because of the differ-
ent input loadings and output capability (an LS gate input, 
for example, looks like half a normal gate input). All run on 
a 5 V supply and use nominal logic levels of 4.5 V and 0 V. 

14.2.6 Complementary metal oxide semiconductor 
(CMOS) logic 

CMOS is virtually the ideal logic family. It can operate on 
a wide range of power supplies (from 3 to 15 V), uses little 
power (approximately 0.01 mW at low speeds), has high 
noise immunity (about 4 V on a 12 V supply) and very 
large fan out (typically in excess of 50). It is not as fast as 

TTL or ECL but its maximum operating speed of 5 MHz is 
adequate for most industrial purposes. (Too high a maxi-
mum speed can actually be a disadvantage as it makes a 
system more noise prone.) 
CMOS is built around the two types of field effect tran-

sistors shown on Figure 14.14. From a logic point of view 
these can be considered as a voltage operated switch. These 
switches can be used to manufacture logic gates. 
Figure 14.15(a) shows how an inverter can be implemen-

ted. With A low, Q1 is turned on and Q2 off. With A high Q2 
is turned on and Z is low. 

Q

Similarly a NAND gate can be constructed as Figure 
14.15(b). If A or B is low, Z will be high because one of the 
parallel pair Q1, Q2 will be on, and one of the series pair Q3, 
4 will be off. The output Z will be low only when both A 

and B are high when Q1, Q2 are both off and Q3, Q4 are 
both on. 
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Figure 14.14 Metal oxide semiconductor (MOS) transistors: 
(a) n channel; (b) p channel 

Q

Figure 14.15(c) shows a CMOS NOR gate. If A or B is 
high, one of Q3 or Q4 will be on taking the output Z low 
(with one of Q1, Q2 off). When both A and B are low, Q1, 
2 will both be on and Q3, Q4 off taking the output high. 
The high input impedance of FETs can present handling 

problems, and early devices could be irreparably damaged 
by static electricity from, say, nylon clothing or leakage cur-
rents from unearthed soldering irons. Modern CMOS now 
includes protection diodes and can be treated like any other 
component. 
Another effect of the high input impedance is the 

tendency for unused inputs to charge to an unpredictable 
voltage. All CMOS inputs must go somewhere; even unused 
inputs on unused gates on multigate packages must go to a 
supply rail thereby forcing a 1 or 0 state. 
CMOS is generally sold in the so called 4000 series which 

is a rationalisation of the original RCA COSMOS 
and Motorola McMOS ranges. `B' suffix CMOS denotes 
buffered signals and improved protection; needless to say 
the B devices are better suited for industrial systems. 

14.2.7 Emitter coupled logic (ECL) 

ECL is the fastest commercially available logic family, and 
with care it can operate at 500 MHz. At these speeds, 

Figure 14.15 Complementary metal oxide semiconductor (CMOS) logic gates: (a) NAND gate; (b) NOR gate 
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however, extreme care needs to be taken with the circuit 
board layout to avoid crosstalk and power supply induced 
noise. ECL obtains its speed from the use of non saturating 
transistors and high power levels (around 60 mW per gate 
compared with CMOS figure of 0.01 mW). The logic levels 
in ECL are �0.8 V and �1.6 V (giving a rather poor noise 
immunity of 0.25 V). ECL is very fast, but its odd voltage 
levels, strict wiring and power supply requirements and 
poor noise immunity preclude its use in industrial applica-
tions except where very high speed is needed. 

14.2.8 Open collector and tri-state outputs 

The TTL NAND gate of Figure 14.16(a) has a single output 
transistor rather than the usual totem pole output. The 
output is connected to Vcc by an external pull up resistor. 
This is known as an open collector output. In Figure 
14.16(b) the outputs of several open collector gates are con-
nected in parallel with a single pull-up resistor. A half circle 
on the gate output symbol is often, but by no means univer-
sally, used to show an open collector output. The output Z 
will be high if, and only if, all the parallel gates have high 
outputs. Using positive logic conventions the paralleled 
outputs provide a positive AND function on the outputs 
of the input gates. 
Another description of the operation is the output Z will be 

low if any of the outputs are low. This will occur if (A and B 
are high) OR (C and D are high) OR (E and F) are high. The 
linking of collectors can be considered to perform a negative 
OR function on the outputs of the input gates and can give a 
possibly complex function for the cost of a single pull up resis-
tor. Its main disadvantage is a poor rising edge (caused by the 
RC time constant of the pull up resistor and stray capacitance) 
and a slight degradation of noise immunity. 

Open collector gates are a possible solution for applica-
tions where many devices communicate via a bus system, the 
backplane of a computer is a typical application. A more 
common approach for bus systems though is the tri-state 
gate. Strictly speaking tri-state is a registered trade mark of 
National Semiconductors. The term tri-state is a bit of a mis-
nomer as the gate does not have three logic levels but rather 
three logic states: high, low and disconnected. A tri-state 
gate has normal inputs plus a separate control input which 
enables the gate or puts the output into a high impedance 
(disconnected) state. Figure 14.17(a) shows the symbol for a 
tri-state two input NAND gate and Figure 14.17(b) shows  
three tri-state buffers which are used to route data from A, B 
or C to output Z as selected by control inputs L, M or N. It  
should be noted that this is fundamentally different from the 
wire AND open collector circuit of Figure 14.16. 

14.2.9 Schmitt triggers 

Many logic elements require fast edges to operate correctly. 
Edges can be degraded for a variety of reasons; stray capa-
citance or a non digital device for example. The Schmitt 
trigger always gives fast edges on its output signals regard-
less of the edge speed of the input signals. 
The transfer function of a conventional gate is shown on 

Figure 14.18(a). The transfer function of a Schmitt trigger 
incorporates hysteresis and is shown on Figure 14.18(b). 
Figure 14.18(d ) shows a slow changing input and the result-
ing output, which always has fast clean edges. 
A Schmitt trigger has the conventional logic symbol with 

an added hysteresis loop similar to Figure 14.18(c). Schmitt 
triggers are usually available in hex inverter or quad two 
input gate ICs. The 74123, for example, is a popular quad 
two input Schmitt trigger NAND gate. 

Figure 14.16 An open collector TTL NAND gate: (a) circuit diagram; (b) logic function using open collector gates. The linking of the collectors gives 
a positive AND or negative OR function depending on the interpretation of the logic states 

Figure 14.17 Tri-state gates: (a) tri-state NAND; (b) tri-state data selection 
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Figure 14.18 The Schmitt trigger: (a) operation of a conventional inverter; (b) operation of an inverter with hysteresis; (c) logic symbol; (d) use of a 
Schmitt trigger to convert a slowly changing signal to a crisp digital signal 

Comparison of Figures 14.18(a) and 14.18(b) shows that 
a Schmitt trigger has better noise immunity than a con-
ventional gate. They are therefore commonly used for 
interfacing to slow and possibly noisy signals from the 
outside world. 

14.2.10 Choosing a logic family 

Until the latter part of the 1980s the designer really had to 
choose between TTL (with the low powered Shottky (LS) 
family being the popular choice) and CMOS. The latter 
was slower and had a much smaller range of devices, but 
had the advantages of very low power consumption, better 
noise immunity and a wide supply tolerance. Since then, 
though, there has been a tendency for the families to merge. 
The trend started with the 74C series of CMOS which pro-

vided CMOS devices with the same pinning as TTL, but with 
CMOS B series electrical characteristics (slower than TTL, 
but with 3 to 15 V supply). These were useful, but the major 
impact was the introduction of the 74HC, 74AC, 74HCT and 
74HCT families. These use improved technologies, were as 

fast as TTL, and (as their name implies) they follow the 
74 series pinning. Taking them in turn: 
74AC is the high speed member of the family, capable of 

operating at speeds of 125 MHz. The voltage supply range 
is 3 to 6 V (essentially TTL with a wider tolerance), and the 
transfer characteristic is the standard CMOS near ideal 
symmetrical curve of Figure 14.19(a). 
74HC is a near replacement for LS TTL with an oper-

ating speed of 30 MHz. Other characteristics are similar to 
74AC. 
As mentioned earlier, the output levels of TTL, shown on 

Figure 14.19(b), are approximately 0.5 V in the 0 state, and 
4.5 V in the 1 state. Standard forms of TTL can, just, 
connect to 74AC or 74HC devices, but the resultant noise 
immunity is poor. Two further forms of CMOS were devel-
oped with a transfer function whose input side mimicked 
a TTL device. These are known as 74ACT (high speed 
version) and 74HCT (practically a direct replacement for 
LS TTL). These should NOT be viewed as a family to be 
used for a complete project, as to do so would give the 
poorer TTL noise immunity. They are, though, exceedingly 
useful when a circuit has to mix TTL and CMOS devices. 

Figure 14.19 Transfer functions for CMOS and TTL: (a) CMOS; (b) TTL and CMOS ACT/HCT 
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In CMOS, therefore, there is now: 

Family Supply Speed (MHz) Comments 

4000B 3 to 15 V 2	 Useful for battery circuits, 
slow, seems unlikely to 
develop further 

74C 3 to 15 V 2	 As 4000B with TTL 
pinning 

74AC 2 to 6 V 125	 Very fast. TTL pinning. 
Power rises with speed so 
normal CLOS low power 
may not be relevant. Care 
needed with layout 

74HC 2 to 6 V 30	 Designed as direct 
replacement for LS TTL 
(but with CMOS signal 
levels) 

74ACT 2 to 6 V 125	 As 74AC with TTL input 
levels 

74HCT 2 to 6 V 30	 As 74HC with TTL input 
levels 

An interesting development is the view that the corner 
supply pins on TTL are not the best arrangement for 
power supply and ground noise, and there seems to be a 
move toward centre pinning on some high speed CMOS 
circuits. 
There are four TTL families in common current use; LS, 

ALS, F and AS. It is worth listing these in tabular form: 

Family Speed (MHz) 

74LS 25 
74ALS 35 
74F 100 
74AS 105 

All require a 5 V �/�0.25 V supply. The suffix in the 
above table appears as part of the device identification; a 
74LS06, for example, is a low power Schottky gate. 
Choosing a device is quite straightforward. First where 

there is little choice; for out and out speed use ECL (but 
remember the precautions needed to avoid noise). For high 
speed, use 74AC (but again take care with the layout). 
Battery circuits are best designed with 4000B or 74C 

devices, the supply is less critical, and both will run on a 
9 V battery until it is flat without the need of a regulator 
circuit. Being slower they are also less prone to noise. 
For `cooking' logic, 74HC seems best suited with a 

reasonable speed, lower power and better noise immunity 
than LS TTL. The only problem is an incomplete coverage 
of the TTL family at present (the useful 7490/92 counters 
are missing for example), so the odd LS or ALS TTL circuit 
may be needed, with 74HCT devices being used as 
interfaces between TTL and CMOS. 
Figure 14.20 shows a comparison between these families. 

14.3 Combinational logic 

14.3.1 Introduction 

Combinational logic is based around the block diagram of 
Figure 14.21(a). Such systems have several inputs and one, or 
more, outputs. The output states are uniquely defined for each 
and every combination of inputs and the ̀ block' does not con-
tain any device such as storage, timers or counters. We there-
fore have n inputs I1 to In and Z outputs Q1 to Qz. In systems 
with multiple outputs it is usually easier to consider each sep-
arately as Figure 14.21(b), allowing us to consider the circuit as 
Z blocks, each different but represented by Figure 14.21(c). 
The number of possible input states depends on the 

number of inputs: 

For two inputs there are four input combinations 
For three inputs there are eight input combinations 
For four inputs there are sixteen input combinations 

Figure 14.20 Comparison of logic families operating at about 1 MHz 
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Figure 14.21 Combinational logic block diagrams: (a) the generalised problem with n inputs and Z outputs; (b) problem split into Z independent 
circuits; (c) one of the Z circuits with a single output 

and so on. Not all of these may be needed. There are 
frequently only a certain number of input combinations 
that may occur because of physical restrictions elsewhere 
in the system. 
The design of combinational logic systems first involves 

examining all the input states that can occur and defining 
the output states that must occur for each and every input 
state. A logic design to achieve this is then constructed from 
the gates described in Section 14.1.3. In many systems the 
design can be done in an intuitive manner, but the rest of 
this section describes more formal design procedures. 
Few real life systems need pure combinational logic, most 

need storage and similar dynamic functions. Such systems 
can be analysed and designed considering them as smaller 
subsystems linked together. The design of dynamic systems It can be seen that Z is 1 for: 
is discussed in Section 14.8. 

�A and B and C 
�

14.3.2 Truth tables or A and B and C 
�

A truth table is a useful way of representing a combina-
tional logic circuit, and can be used to design the circuit 
needed to achieve a desired function. 
Suppose we have three contacts monitoring some event 

(overpressure in a chemical reactor for example) and we 
wish to construct a majority vote circuit. If the three 
switches are called A, B, C and the majority vote Z this 
would have the truth table: 

or A and B and C 
or A and B and C 

The desired logic function can then be constructed 
directly from the truth table as Figure 14.22. In general, the 
circuit derives from a truth table will consist as a set of 
AND gates whose outputs are OR'd together. This form of 
circuit is known as a Sum of Products (see Section 14.4.3), 

Figure 14.22 Non minimal implementation of majority vote logic direct from the truth table 



//integras/b&h/Eer/Final_06-09-02/eerc014

Combinational logic 14/13 

Figure 14.23 Sum of products (AND/OR) logic implementation based solely on NAND gates: (a) required function; (b) NAND based circuit; 
(c) representation of a NAND gate; (d) circuit b redrawn in the style of representation c. The inverters cancel giving the required function 

and one of the reasons for the popularity of NAND gates is 
that an s of p expression can be formed purely with NAND 
gates. 
A truth table design always gives a design which works 

and is logically correct, but does not always give a circuit 
which uses the minimum combination of gates. To do this 
we need one of the other techniques described below. 
Consider the expression 

Z �( (A & B) OR  (C & D) 

This has the simple circuit of Figure 14.23(a), which 
obviously fulfils the logic function. Consider, however, 
the totally NAND based circuit of Figure 14.23(b). 
Straightforward, if laborious, testing of all possible sixteen 
input states will show that it behaves identically to Figure 
14.23(a). In some mysterious way, the right-hand NAND 
gate is behaving as an OR gate. 
This rather surprising fact is a result of De Morgan's 

theorem, described in the next section. Intuitively, however, 
we can see the reason by drawing up the truth table for the 
OR gate preceded by inverters as Figure 14.23(c): 

This is the same as a NAND gate, so a NAND gate can, 
with legitimacy, be drawn as Figure 14.23(c). 
The circuit of Figure 14.23(b) could now be drawn as 

Figure 14.23(d) with the ingoing NANDs drawn as ANDs 
followed by an inverter, and the outgoing NAND by the 
arrangement of Figure 14.23(c). Obviously the intermediate 
inverters cancel, leaving the equivalent circuit of Figure 
14.23(a). 

14.3.3 Boolean algebra 

In the nineteenth century a Cambridge mathematician and 
clergyman George Boole, devised an algebra to express and 
manipulate logical expressions. His algebra can be used to 
represent, design and minimise combinational logic circuits. 

The AND function is represented by a dot (.), so 

Z �(A.B 

means Z is 1 when A is 1 AND B is 1. Often the dot is 
omitted (e.g. Z �(AB) 
The OR function is represented by an addition sign (�), so 

Z �(A �B 

means Z is 1 when A is 1 OR B is 1. 
The invert function is represented by a bar ±, so 

Z �( �A 

means Z takes the opposite state to A. Some sources use the 
�0( to denote inversion so A and A0( both mean the inverse of A. 

Boolean algebra allows complex expressions to be written 
in a concise manner and can also be used to simplify expres-
sions. To achieve this, a series of rules are used. The first 
eleven of these are self obvious (or can be visualised by 
considering the equivalent relay circuits). 

(a) A.1 �(A 
(b) A.0 �( 0 
(c) A � 1 �( 1 
(d) A � 0 �(A 
(e) A.A �(A (e and f are known as the Idempotent laws) 
(f) A �A �(A 
(g) A���(A (known as the Involution law) 

�(h) A.A �( 0 (h and i are known as the Complementary laws) 
(i) A �( �A �( 1 
(j) A �B �(B �A (j and k are known as the Commutative laws) 
(k) A.B �(B.A 

The next two laws, called the Associative laws, allow us to 
group brackets around variables with the same operator 

(l) (A �B) �C �(A � (B �C) �(A �B �C 
(m) (A.B).C �(A.(B.C) �(A.B.C 

The next two laws are called the Absorption laws, and 
tell us what happens if the same variable appears with AND 
and OR operators 

(n) A �A.B �(A 
(o) A.(A �B) �(A 

The next laws, called the Distributive laws, tell us how to 
factorise Boolean equations 

(p) A �B.C �( (A �B).(A �C) 
(q) A.(B �C) �(A.B �A.C 
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In general, Boolean expressions can be expressed in two 
forms. The first form, called product of sums, or P of S, 
brackets OR terms and ANDs the results for example: 

� � �Z ��A �B�:�B �C �D�:�A �D�(
The second form, called sum of products, or S of P, 

groups AND terms and ORs the results, for example: 
�Z ��A.B. �D�� �B�.C�� �A.D �(

Truth tables, described in Section 14.4.2, inherently give 
an S of P result. 
The complementary function of a Boolean expression 

yields the inverse of the expression (i.e. where the expression 
yields 1, the complement yields 0). The expressions (A �B) 
and ( � �A.B) for example, can be shown to be complementary 
by simply constructing their truth tables. 
The last two laws, known as De Morgan's theorem, show 

how to form the complement of a given expression (and 
gives one way to interchange S of P and P of S forms). 

�(r) �A � B� � (A�:B 

�(s) �A:B� � ( �A � B 

In its formal representation, De Morgan's theorem appears 
rather daunting. It can be more easily expressed: 
To form the complement of an expression 

(1) Replace each `�' in the original expression with `.' and 
vice versa. 

(2) Complement each term in the original expression. 
�For example, to complement the expression A �B.C: 

Step 1, replace `�' by `.' and `.' by `�' giving: 
�A.�B �C�(
Step 2, complement each term 
� �A.�B �C�(
which is the result. 
Boolean Algebra can be used to minimise logical expres-

sions, but the method is rarely obvious, and it is easy to 
make errors with double bars and swapping of `.'s and 
`�'s. Minimisation by Boolean algebra makes good examin-
ation questions, but is rarely used in practice. An easier way 
to achieve minimisation is to use the graphical Karnaugh 
map, described below. 

14.3.4 Karnaugh maps 

A Karnaugh map is an alternative way of presenting a truth 
table. The map is drawn in two dimensions; two, three and 
four variable maps are shown on Figure 14.24. 

Each square within the map represents one line on the 
truth table. For example: 

�square X represents A � 1, B � 0 which  can be  written  A.B 
square Y represents A � 0, B � 1, C � 1 which can be 
written A.B.C�

square Z represents A � 1, B � 0, C � 1, D � 0 which can be 
written A.B.C.D� �

The essential feature of a Karnaugh map is the way in 
which the axes are labelled. It will be seen that only one 
variable changes for a move between any adjacent horizon-
tal or vertical squares 
The use of this feature is not immediately apparent, but 

consider Figure 14.25. This contains four terms giving a 1 
output. These are: 

�A.B.C.D, A.B.C. �� � D, A.B.C.D, A.B.C.D 

so we could write (quite correctly) 

D �A.B.C. �Z �A.B�.C. � D �A.B�.C.D �A.B.C.D 

Examination of the map, however, shows that the D vari-
able and B variable can change state without affecting the 
output. The circled squares, in fact, represent AC, so the 
above expression can be simplified to 

Z �AC 

Groups of two adjacent cells on a three variable map 
represent some combination of TWO of the three variables. 
On Figure 14.26(a), groupings for A.B and C.B are shown. �

This map represents 

Z �A�.B �C.B�

Two adjacent cells on a four variable map represent some 
combination of three of the four variables. On Figure 

� � � � � �14.26(b), groupings for A.B.C, B.C�.D, A.B.D and B.C.D 
are shown. This map thus represents 

� � � �Z �A�.B.C �B.C�.D �A.B�.D �B.C.D 

�B.C.D �A.B.C. �Figure 14.25 Minimisation of Z �A. � � D �A.B.C.D 
�A.B.C.D to Z �A.C using a Karnaugh map 

Figure 14.24 Karnaugh maps: (a) two variable; (b) three variable; (c) four variable 
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Figure 14.26 Grouping of two adjacent cells: (a) on a three variable map; (b) on a four variable map 

Groups of four adjacent cells on a three variable map (1) Plot the Boolean expression or truth table onto the 
represent a single variable. The group on Figure 14.27(a) Karnaugh map 
represents the variable A, hence (2) Form new groups of 1s on the map. Groups must be 

rectangular and contain 1, 2, 4 or 8 cells. Groups should 
Z �(A 

Groups of four adjacent cells on a four variable map 
represent some combination of two of the four variables. 
The groups on Figure 14.27(b) represent B ��D and BD. The  
map represents 

�Z �(B�.D �B.D 

A group of eight adjacent cells on a four variable map 
represent a single variable. The group on Figure 14.28 repre-
sents C and B, so  �

�Z �(C �B 

It is important to realise that top and bottom edges are 
considered adjacent as are right and left sides. Grouping 
can therefore be made around the tops and sides as Figure 
14.29 which represents 

Z �( �A.C �AC�

The rules for minimisation using Karnaugh maps are 
simple and straightforward: Figure 14.28 Grouping of eight adjacent cells 

Figure 14.27 Grouping of four adjacent cells: (a) on a three variable map; (b) on a four variable map 
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Figure 14.29 Top and bottom sides are adjacent 

be as large as possible and there should be as few groups 
as possible. Do not forget overlaps and possible round 
the edge groupings. 

(3) From the map, read off the expression for each group. 
The minimal expression is then obtained in S of P form, 
and can be directly implemented in AND/OR gates or 
NAND gates 

Figure 14.30(a) shows a majority vote circuit (2 out of 3) 
plotted onto a Karnaugh map and grouped as Figure 
14.30(b). It will be seen that this has three terms giving the 
simple NAND based circuit of Figure 14.30(c). 

14.3.5 Conversion between P of S and S of P 
representations 

It is occasionally required to translate an S of P expression 
into a P of S expression and vice versa 
These are most conveniently handled in the form 

Z �( ��N1;N2;N3 . . .  �( for S of P 

and 

Z �( ��N1;N2;N3 . . .  �( for P of S 

where Nn is the numerical equivalent of the binary pattern 
at the corresponding gate input. If, for example, a gate 
input is C, B, A, N will be 6 corresponding to 110. �

The first step is to note the largest number, which deter-
mines how many bits we are dealing with (three bits for 
seven or less, four bits for fifteen or less and so on.) Call 
the maximum number corresponding to this number of 
bits Nmax (seven, fifteen, thirty-one etc.). 

(N

Note the unused numbers in the expression to be con-
verted. For each unused number Nun there will be a number 

max ± Nun) in the expression in the other form. For 
example, to convert the S of P expression 

Z �( ��1; 4; 5; 6�(
to P of S form we first note Nmax is seven (three bits). The 
terms in the P of S representation will be given by 

Unused S of P 0 2 3 7 Nun 
P of S  7 5  4 0  (Nmax �Nun) 

Giving a P of S representation of 
Z �(� (0, 4, 5, 7) which is the equivalent to the original S 

of P expression. 
The method for reverse conversion is identical. 

14.3.6 Formal minimisation, the Quine-McCluskey 
method 

The Karnaugh map is an excellent way of minimising com-
binational logic, but is essentially limited to five inputs and 
relies on human intuition. More formal methods are needed 
for more complex functions. The most common of these is 
Quine-McCluskey. The method can deal with any number 
of inputs, but is lengthy and error prone for direct human 
implementation. It is, however, ideally suited for computer 
implementation. 
The start point is an S of P expression in the form 

Z �(� (N1;& N2;& N3. . .�(

Figure 14.30 The majority vote circuit: (a) plotted onto Karnaugh map with grouping; (b) AND/OR implementation; (c) equivalent NAND based 
implementation 
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From this the minterms are grouped according to 
whether they have one, two, three etc. 1s in them. For 
example, with 

Z �(� �2;& 3;& 4;& 5;& 6;& 7;& 9;& 11;& 12;& 13�(
we would group them 
Minterms with one 1 

0010 (2)

0100 (4)


Minterms with two 1s 

0011 (3)

0101 (5)

0110 (6)

1001 (9)

1100 (12)


Minterms with three 1s 

0111 (7)

1011 (11)

1101 (13)


Each term in each group is compared with each term in 
the group immediately below. If one and only one digit dif-
ference is found, a new entry in the lower group is formed 
with X replacing the single differing digit. Comparing 0010 
with 0011 gives a new entry of 001X in the lower table. For 
the above groups this gives: 

The letters a, b, c etc. show the comparisons made and the 
groups created. Any group which does not create a new 
group is called a prime implicant, denoted by # above. These 
are X011, 10X1, 1X01, 0X1X, 01XX, X10X (representing 
DCBA, A being the least significant as usual) with X denot-

�ing don't care. X011 is thus C.B.A. An S of P circuit based 
on these prime implicants will work, but is not necessarily 
minimal. 
Next a chart is drawn of these prime implicants, as shown 

on Figure 14.31 where each prime implicant is represented 
by a t. For four bit numbers, each minterm with full four 
bits will have one t, with one X there will be two ts and 
with two crosses four ts. X011, for example, represents 
minterms 3 and 11. The first stage is to identify columns 
with only a single t. The corresponding prime implicants 
MUST be in the final expression. These are noted down 
and all the corresponding ts marked for each row as these 
are now covered. 
For each column, if there is a marked t in the column, all 

ts in the column can now be marked, as this minterm has 
been included. If a prime implicant has all its ts marked it 
is redundant and can be deleted (e.g. 01XX). 
There will probably be one or more ts left unmarked. 

Choose from the remaining prime implicants to give the 
best grouping. Give preference to minterms with the largest 
number of Xs, and remember that once a single t is marked 
in a column, all the ts in the column can be marked. When 
all ts have been marked a solution has been reached. 
Following this procedure for Figure 14.31 gives: 

�CD �B �Z �(A � D �BC 

a result which could, in all honesty, have been arrived at 
much faster with a Karnaugh map and common sense. The 
procedure is, however the basis of computer minimisation 
of logic circuits as used in PLA and PAL configuration 
programs. 

14.3.7 Hazards, races and glitches 

Gate propagation delays discussed in Section 14.2.2 can 
cause unwanted random pulses to appear in logic circuits. 
These unwanted pulses are known variously as hazards, 
races or glitches. 
The logical output of Figure 14.32(a) should always be 

zero since 
�Z �(A.A �( 0 

�In practice, however, A will be delayed by the propaga-
tion delay of an inverter giving the possible waveforms of 
Figure 14.32(b). As A changes a small pulse may appear at 
the output. 
Glitches are not always immediately obvious. A similar 

problem can occur with the NAND based AND/OR circuit 
of Figure 14.33(a). This implements the relationship 

Z �(A.B �( �A.C 
�As before A must be obtained from some form of inverter 

as Figure 14.33(b). The circuit is logically correct but if 
B �(C �( 1 then the circuit is behaving in a similar way to 
Figure 14.32(a). If B and C are both 1 and A changes state 
a small pulse will probably appear at the output. 
Plotting Figure 14.33 onto a Karnaugh map as Figure 

14.34(a) shows a way to identify and eliminate glitches. There 
�are two groups on the map; AB and AC. Moving  between  

AB �( 11 and AB �( 01 we move between groups. This corre-
sponds to A changing from 1 to 0 or 0 to 1. A potential glitch 
has adjacent 1s not covered by the same group. 
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Figure 14.31 Prime implicant chart after essential implicants and subsequent minterms have been marked 

Figure 14.32 An obvious glitch producing circuit: (a) logic diagram, the output should always be `0'; (b) actual circuit behaviour 

Figure 14.33 Non obvious glitch producing circuit: (a) logic diagram; (b) redrawn to show source of the glitch 

To remove the risk of a glitch we add an additional group 
as Figure 14.34(b). There are now no adjacent 1s not in the 
same group. The resulting circuit is shown on Figure 14.34(c). 
Note that the group BC is logically redundant and is 
included solely to prevent glitches when A changes state 
with B �(C �( 1. Glitch free circuits are often non minimal. 
Glitches may not always be important. In general, if the 

output of a glitch prone circuit is not feeding directly (or 
indirectly) a counter, storage device or timer the glitches 
will probably have no effect. Glitches can also be ignored 
by using clocked synchronous systems. Different logic 
families have different propensities for generating and 
ignoring) glitches. The important factor is the relationship 
between edge speeds and propagation delays. CMOS, with 
edge speed similar to or longer than the propagation delay, 
has a useful tendency to ignore glitches. ECL, with very fast 
edge speeds, is very prone to glitches. 

14.3.8 Integrated circuits 

Many complex functions are available in IC form, and a 
circuit designer should aim to minimise cost and the number 
of IC packages rather than the number of gates. A minimi-
sation exercise, whether by Boolean algebra or Karnaugh 
map, should always be preceded by a search of an IC 
catalogue for a suitable off the peg device. 

14.3.9 UCLAs, PALs and PLAs 

An integrated circuit consists of a small slice of silicon into 
which is etched the various individual unconnected com-
ponents required to make the required circuit. These are 
then connected by a thin metallised layer to form the 
required device function. An UCLA (for uncommitted logic 
array, also known as an ULA) consists initially of a large 



//integras/b&h/Eer/Final_06-09-02/eerc014

Storage 14/19 

Figure 14.34 Glitch free design using a Karnaugh map: (a) original minimal grouping; (b) BC term added to remove the glitch. The final grouping is 
non minimal; (c) the resulting glitch free, but non minimal, logic 

number of assorted gates, storage and memories but with-
out the metallised interconnection layer. The user specifies 
the required circuit which is then formed by the design of 
the metallised layer. The basic IC silicon slice (which is the 
expensive part) is thus common to many users and the relat-
ively cheap metallisation layer is specific to one user's appli-
cation. UCLAs therefore allow designers to have their own 
ICs at a reasonable price. They are, though, only cost effec-
tive for reasonable volume production runs. 
An alternative approach, suitable for smaller volumes, is 

programmable logic. These are essentially a combination of 
true/complement inputs with an AND/OR output as shown 
on Figure 14.35. Each connection point is originally linked, 
but can be blown open by the designer (using a program-
ming terminal) to leave the desired function. The original 
devices were based on bipolar construction, and literally 
used small metallic fuses. Once blown, they could not be 
re-used. Later MOS devices can be erased by UV light in a 
similar way to EEPROMs. 
The simplest devices use a programmable AND combina-

tion (selected from the true/complement inputs) with a fixed 
AND/OR logic. These are known as Programmable Array 
Logic, or PALs. The more versatile (but more complex) 
arrangement of Figure 14.36 uses programmable AND 
plus programmable OR connections. These are known as 
Programmable Logic Arrays or PLAs, (this distinction is 
not quite true, the terms PLA and PAL are used inter-
changeably by some manufacturers). 
Figures 14.35 and 14.36 are essentially combinational 

logic in sum of product (S of P) form (see Section 14.3.2). 
Sequential programmable logic is also available, and is 
typically of the form of the Figure 14.37 based around an 
AND/OR/D-type circuit. These are known as registered 
or sequential PALs. They are very useful for building logic 
networks built around state transition diagrams (see Section 
14.8) 
There are some disadvantages. Early devices had a vora-

cious power appetite, several hundred mA for some. The 
later MOS devices are better, but their use should be ques-
tioned on battery driven devices. There is also a one-off 

investment needed in a programming terminal, and pro-
gramming languages such as ABEL, CUPL and PALASM. 
These work out the required link blowing from a designer 
specified logic function defined in combinational or state 
transition form. They do not, however, check out for glitches 
and even seem to encourage them by aiming for truly 
minimal logic. Some care is needed by the designer, but the 
languages do allow redundant combinations to be specified 
to give glitch free circuits. 
With bipolar devices, it should also be remembered that 

bipolar devices cannot be reprogrammed if an error is 
made. Mistakes with bipolar programmable logic are not 
cheap, and even with MOS versions, erasure with UV light 
is not instantaneous. 
Programmable logic is very popular where standard 

boards (with fixed connections to the outside world) can be 
used in different applications. Typical examples are vending 
and ticket machines, interface devices or testing of a logic 
circuit before building the final version. 

14.4 Storage 

14.4.1 Introduction 

Most logic systems require some form of memory. A typical 
relay circuit is the motor starter circuit of Figure 14.38 
which `remembers' which of the two operator push buttons 
was pressed last. The memory is achieved by the latching 
contact A1. 

14.4.2 Cross coupled flip flops 

The logical equivalent of Figure 14.38 is the cross coupled 
NOR gate circuit of Figure 14.39(a). Assume both inputs 
are 0, and output Q is at a 1 state. The output of gate a 
will be 0, and the two 0 inputs to gate b will maintain Q in 
its 1 state. The circuit is therefore stable. If the reset input is 

�now taken to a 1, Q will go to a 0. and Q to a 1. Similar 
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Figure 14.35 The basis of programmable logic 

Figure 14.36 A programmable logic array with AND/OR inputs both programmable 
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Figure 14.37 Sequential programmable logic with tri-state outputs. A typical device would have eight inputs and eight D type flip flops 

Figure 14.38 A simple relay storage circuit used to start a motor. The 
circuit remembers which button (Start or Stop) was last pressed 

analysis to that above will show that the circuit is stable in 
this state, even when the reset input goes back to a 0. 
The set input can be used now to switch the Q output to 1 

�and the Q back to a 0. The set and reset inputs cause the 
output to change state, with the outputs indicating which 
input was last at a 1 state as summarised by Figure 14.39(b). 
If both inputs are 1 together, both outputs go to a 0, but this 
condition is normally disallowed. 

The cross coupled NOR gate circuit is called an RS Flip 
Flop, and is shown on logic diagrams by the symbol of 
Figure 14.39(c). 
It is also possible to construct a cross coupled flip flop 

from NAND gates as Figure 14.40(a). Analysis will show 
that this behaves similar to Figure 14.39, but the circuit 
remembers which input last went to a 0 as shown on 
Figure 14.40(b). The logic symbol for a NAND based RS 
flip flop is shown on Figure 14.40(c); the small circles on 
the input showing that the flip flop responds to 0 inputs. 

14.4.3 D type flip flop 

The D type flip flop shown on Figure 14.41(a) has a single 
�data input (D), a clock input and the usual Q and Q outputs. 

Superficially this is similar to the latch memory above, but 
the clock operates in a more subtle way. The operation of a 
typical D type flip flop is shown on Figure 14.41(b). The 
clock samples the D input when the clock input goes from a 
0 to 1, but the output changes state when clock goes from 1 to 
0. The significance of this is explained below in Section 14.4.6. 
There are several ways in which a D type flip flop can 

be implemented. A common circuit uses the master/slave 
arrangement of Figure 14.41(c). When the clock input is 1, 
the D input sets, or resets, the master flip flop. When the 

Figure 14.39 A NOR based RS flip flop. This circuit remembers which input was last a `1': (a) logic diagram; (b) operation; (c) logic symbol 
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Figure 14.40 A NAND based RS flip flop. This circuit remembers which input was last a `0': (a) logic diagram; (b) operation; (c) logic symbol 

Figure 14.41 The D type flip flop: (a) logic symbol; (b) operation; (c) logic diagram for a master/slave D type 

clock input is 0 the state of the master flip flop is transferred 
to the slave flip flop (and the outputs take up the state of D 
when the clock input was 1). Note that the master flip flop is 
isolated from the D input whilst the clock is 0. 
Although it would be feasible to construct a master/slave 

flip flop from discrete gates, integrated circuit D types (such 
as the TTL 7474 or the CMOS 4013) are readily available. 

14.4.4 The JK flip flop 

In Section 14.4.2 the NOR based RS flip flop was described, 
and it was stated that the input state R �(S �( 1 was normally 
disallowed. The JK flip flop, shown on Figure 14.42(a) is  a  
clocked RS flip flop with additional logic to cover this pre-
viously disallowed state. The clock input acts as described 

above for the D type flip flop, i.e. sampling the inputs on 
one edge, and causing the outputs to change on the other. 
The outputs after a clock pulse for J �( 1, K �( 0; J �( 0, 

K �( 1; J �( 0, K �( 0 are as would be expected for a clocked 
RS flip flop. If J �(K �( 1, the outputs toggle; that is the 

�states of the Q and Q interchange. This action is sum-
marised on Figure 14.42(b). 
The toggle state is the basis for counters, described in 

Section 14.7. 

14.4.5 Clocked storage 

The D type and JK flip flops described above are examples 
of clocked storage. The advantages, and implications of this 
are probably not immediately obvious. 

Figure 14.42 The JK flip flop: (a) logic symbol; (b) operation 
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Figure 14.43 Clocked storage. Data moves one position for each pulse on the move line 

In all bar the simplest systems, data is often required 
to be moved around from one storage position to another. 
In Figure 14.43, for example, data is to be moved through 
stores A, B, C in an orderly manner. If simple flip flops were 
used along with a signal enable as shown, the data would 
shoot straight through all the stages. If clocked storage is 
used, the data will sequence from A to B to C, moving one 
position for each clock pulse. 

14.5 Timers and monostables 

Control systems often need some form of timer. Timing 
functions in logic circuits are provided by devices called 
monostables or delays. There are many types of delay, 
although all can be considered as Figure 14.44(a), to consist 

�of an input, Q and Q outputs and an RC network which 
determines the delay period. 

The commonest timer, often called the one shot or mono-
stable, gives an output pulse, of known duration, for an 
input edge. The user can select which edge (0±>1 or 1±>0) 
triggers the circuit. On Figure 14.44(b) a 0±>1 edge is used. 
Monostables are the basis of all other delay circuits and 
are widely available (74121, 74122 in TTL, 4047, 4098 in 
CMOS). Pure delays are shown on Figure 14.44(c±e), and 
these can be constructed by adding gates to monostable out-
puts. Figure 14.44(f/g) shows the circuit for a delay off. 
A variation of the monostable is the retriggerable mono-

stable. In most monostables circuits the timing logic ignores 
further input edges once started. In a retriggerable mono-
stable each edge sets the timing circuit back to the start 
again. The action of a retriggerable and normal monostable 
are compared on Figure 14.45. 
The time delay of any timer is of the order of RC seconds 

where R is the value of the timing resistor in ohms and C is 
the value of the timing capacitor in farads. For delays of 
more than a few seconds very large values of R and C are 

Figure 14.44 Various forms of timers and monostables: (a) basic form of a timer. The timer duration is determined by the values of R and C and is 
usually of the order of RC seconds; (b) one shot timer, often called a monostable; (c) delay on timer; (d) delay off timer; (e) delay on and off timer; 
(f) delay off timer built using a simple monostable; (g) timing waveforms for circuit f 
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Figure 14.45 A re-triggerable monostable. Each input 0 to 1 edge re-starts the timing function 

Figure 14.46 Implementation of a long period timer 

required. High value resistors are prone to changes in value 
from leakage and large value capacitors must be electro-
lytics with problems from leakage, size and long term drift. 
For periods of more than a few seconds it is usually better 
to produce a time delay with an oscillator and counter as 
Figure 14.46. The oscillator produces a free running pulse 
chain which is normally blocked by gate 2. A start pulse 
sets flip flop 3 and resets the counter. With flip flop 3 set, 
pulses are passed to the counter which counts up. When 
the counter reaches a pre-determined count it resets the 
flip flop. The Q output of the flip flop thus goes high for a 
time 

T �( N �( P seconds 

where N is the count preset and P the oscillator period. 
Integrated circuits based on this principle, such as the 
ZN1034, are available giving very long delays (up to days) 
with reasonable value components and little problems from 
drift. 

14.6 Arithmetic circuits 

14.6.1 Number systems, bases and binary 

In previous sections, logic signals have been assumed to rep-
resent events such as printer ready, or low oil level. Digital 
signals can also be used to represent, and manipulate numbers. 
We are so used to the decimal number system that it is 

hard to envisage any other way of counting. Normal every 
day arithmetic is based on multiples of ten. For example, 
the number 9156 means: 

9 thousands �( 9 �( 10 �( 10 �( 10 
plus 1 hundred �( 1 �( 10 �( 10 
plus 5 tens �( 5 �( 10 
plus 6 units �( 6 

Each position in a decimal number represents a power of 
ten. Our day to day calculations are done to a base of ten 
because we have ten fingers. Counting can be done to any 
base, but of special interest are bases 8 (called octal ), 16 
(called hex for hexadecimal ) and two (called binary). 
Octal uses only the digits 0±7, the octal number 317, for 

example, means 

Hex uses the letters A±F to represent decimal ten to 
fifteen, so hex C52, for example, means 

Binary needs only two symbols, 0 and 1. Each position in 
a binary number represents a power of two and is called a 
bit, for BInary digiT, most significant to the left as usual, so 
101101 is evaluated: 
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Fractions can also be represented in binary, although this 
is not commonly encountered. Taking fractions as powers 
of two we get 1/2 (0.1 in binary), 1/4 (0.01 in binary), 1/8 
(0.01) and so on. The binary number 110.101 is thus 6 plus 
0.5 plus 0.125 giving 6.625. 
Conversion from decimal to binary is achieved by succes-

sive division by two noting the remainders. Reading the 
remainders from the top (LSB) to bottom (MSB) gives the 
binary equivalent. For example, decimal 23 

Decimal 23 is binary 10111. 
Octal and hex give a simple way of representing binary 

numbers. To convert a binary number to octal, the binary 
number is written in groups of three (from the LSB) and the 
octal equivalent written underneath, for example 11010110 

grouped in threes 11 010 110 
Octal 3 2 6 

Hex conversion is similar, but groupings of four are used. 
Taking again the binary number 11010110; 

grouped in fours 1101 0110 
Hex D 6 

The octal number 326 and the hex number D6 are both 
representations of the binary number 11010110. 

14.6.2 Binary arithmetic 

Consider the decimal sum: 

This is evaluated in three stages: 

At each stage we consider three `inputs'; two digits and a 
possible carry from the previous stage. Each stage has two 
outputs, a sum digit and a possible carry to the next, more 
significant state. A single digit adder can therefore be 
considered as Figure 14.47(a). Several single digit adders 
can be cascaded, as Figure 14.47(b), to give an adder of 
any required number of digits. Note the carry out of the 
most significant stage becomes the most significant digit. 
Binary addition is similar, except that there are only two 

possible values for each digit. If Figure 14.47(a) is a binary 
adder, there are eight possible input combinations: 

An example of binary arithmetic is 

The implementation of the adder truth table is a simple 
problem of combinational logic; one possible solution is 
shown on Figure 14.47(c). In practice, of course, adders 
such as the TTL 7483 are readily available in IC form. 
Negative numbers are generally represented in a form 

called two's complement. The most significant digit repre-
sents the sign, being 1 for negative numbers and 0 for posi-
tive numbers. The value part of the number is 
complemented and 1 added. For example: 

�12 in two's complement is 01100 (the MSB 0 indicating 
a positive number). 

To get to two's complement for �12 we complement 
1100 giving 0011, set the MSB to 1 giving 10011 then add 1 
giving 10100 which is the two's complement representation 
of �12. 
Similarly 

In each case, addition of the positive and negative num-
ber will give the result zero, e.g. 

The top carry is lost, giving the correct result of zero. 
Two's complement representation allows subtraction to 

be done by adding a negative number, for example 12 � 3 
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Figure 14.47 Adder circuits: (a) representation of a one digit adder. This block diagram will be the same regardless of the number base used; 
(b) construction of a four digit adder from four identical one digit adders; (c) one bit (i.e. one digit) binary adder logic diagram 

The top bit is lost giving the correct result of �9. but simpler in that only four multiplication results need to 
Multiplication and division are rarely required in simple be considered: 

logic systems and are generally best implemented with some 
form of microprocessor assembly in conjunction with specia- 1 �( 1 �( 0;& 1 �( 0 �( 0;& 0 �( 1 �( 0;& 0 �( 0 �( 0 

list mathematical co-processors such as the AMD9511. If a A typical binary multiplication is therefore 
hardware solution is required it can be based on the addition 
of weighted partial sums. Consider the decimal multiplication 

The multiplicand is multiplied by each digit of the multi- Note that multiplying two four bit numbers can give an 
plier in turn and the part results added with appropriate eight bit result. If two binary numbers A & B are to be multi-
weighting to give the result. Binary multiplication is similar plied, therefore, partial sums are obtained by multiplying 
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(i.e. gating) A by each bit of B to form as many partial sums 
as there are bits in B. These partial sums are then weighted 
and added to give the result as above. 
The fastest multiplication can be obtained by using Read 

Only Memories (ROMs) programmed with an entire multi-
plication table. The multiplicand and the multiplier then act 
as the ROM address and the result is simply read. Two 1 k 
bit ROMs can form a four by four multiplier with no 
additional logic. The 74284 & 74285 are integrated circuits 
designed specifically for this purpose. 
Division is even rarer, but can also be performed using 

ROMs. 

14.6.3 Binary coded decimal (BCD) 

A single decimal digit can take any value between 0 and 9. 
Four binary digits are therefore needed to represent one 
decimal digit. In BCD, each decimal digit is represented by 
four bits. For example: 

9 4 0 7 6 
1001 0100 0000 0111 0110 

BCD is not as efficient as pure binary. 12 bits in pure bin-
ary can represent 0±4095, compared with 0±999 in BCD. 
BCD, however, has advantages where decimal numbers are 
to be read from decade switches or sent to digital displays. 

14.6.4 Unit distance codes 

Figure 14.48 shows a possible application of binary coding. 
The position of a shaft is to be measured to 1 part in 16 by 
means of an optical grating moving in front of four photo-
cells. The photocell outputs give a binary representation of 
the shaft angular position. 
Consider what may happen as the shaft goes from posi-

tion 7 (0111) to position 8 (1000). It is unlikely that all the 
cells will switch together, so we could get 

or any other lengthy sequence of four bits. These possible 
incorrect intermediate states can be avoided by using a code 
in which only one bit changes between adjacent positions. 
Such codes are called unit distance codes. 
The commonest unit distance code is the Gray code, 

shown in four bit form below. 
It will be noted that the code is reflected about the centre. 

Sometimes the term `reflected code' is used for unit distance 

Figure 14.48 Encoding an angular position into a binary signal with a 
shaft encoder 

codes. A unit distance code can be constructed to any even 
base by taking an equal number of combinations above and 
below the centre point of a Gray code. A decimal version 
(called the XS3 cyclic BCD code) is also shown. In this code 
zero is 0010, one is 0110, two is 0111 and so on to nine 
which is 1010. 
Conversion between binary and Gray code is straightfor-

ward, and is achieved with XOR gates as shown on 
Figure 14.49(a) and (b). 

14.7 Counters and shift registers 

14.7.1 Ripple counters 

Counters are used for two basic purposes. The first, and 
obvious, use is the counting, or totalising, of external events. 
The second use of counters is the division of a frequency 
to give a new, lower frequency. 
The `building block' of all counters is the toggle flip flop 

which changes state each time its clock input is pulsed. 
Usually the toggling occurs on the negative edge as shown 
on Figure 14.50(a). A toggle flip flop can be constructed 
from JK or D type flip flops as shown on Figure 14.50(b, c). 
If the Q output of a toggle flip flop is connected to the 

clock input of the next stage as shown on Figure 14.51(a), a 
simple binary counter can be constructed to any desired 
length. Figure 14.51 is a 3 bit counter with A the LSB and 
C the MSB. This counts: 
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Figure 14.49 Conversion between binary and Gray codes: (a) binary to Gray; (b) Gray to binary 

Figure 14.50 The toggle flip flop: (a) operation, the output changes state for each input pulse; (b) a JK toggle flip flop; (c) a D type connected to 
make a toggle flip flop 

Another pulse will take it to state 0 again. It can be seen 
�that Figure 14.51 is counting up. To count down, the Q out-

puts are connected to the input of the following stage and 
the signal outputs taken from the Q lines. 
There are two limitations to the speed at which a counter 

chain similar to Figure 14.51 can operate. The first is the 
maximum speed at which the first (fastest) stage can toggle. 
The second restriction is not so obvious. 
Consider the case of an 8 bit counter going from 

01111111 to 10000000. The LSB toggling causes the next 
to toggle and so on to the MSB. The change has to propa-
gate through all 8 bits of the counter, so circuits similar to 
Figure.14.51 are called ripple counters. During the `ripple' 
the counter will assume invalid states and cannot 
be sensibly read. Obviously the propagation delay through 
all the stages should be considerably less than the input 

period. High speed applications use synchronous counters, 
described below. 
In Figure 14.51 the frequency of output C is precisely one 

eighth of the input frequency. A simple ripple counter can 
therefore also act as a frequency divider. If we define 

N �( fin =fout 

then N �( 2m for m binary stages. 
It will also be seen that the output of any stage of a binary 

counter has equal mark space ratio regardless of the input 
mark/space providing the input frequency is constant. 
Although it is feasible to construct ripple counters with D 

type and JK flip flops it is usually more cost effective to use 
MSI ICs such as the TTL 7493 4 bit counter or the CMOS 
4024 7 bit counter. These incorporate features such as a 
reset line to take the counter to a zero state. 

Figure 14.51 A simple three bit binary ripple counter constructed from three toggle flip flops 
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14.7.2 Synchronous counters 

Ripple counters are limited in both speed and length by the 
cumulative ripple through propagation delay and also tem-
porarily exhibit invalid outputs. Although these limitations 
are not important in slow speed applications, they can cause 
difficulties in high speed counting. 
These restrictions can be overcome by the use of a 

synchronous counter where all required outputs change 
simultaneously. There is no ripple propagation delay through 
the counters and no transient false count stages. The only 
speed restriction is the toggling frequency of the first stage. 
The building block of a synchronous counter is the JK 

flip flop/AND gate arrangement of Figure 14.52(a). If the 
T input is 1, the JK flip flop will toggle on the receipt of a 
clock pulse. If the T input is D, the flip flop will not respond 
to a clock pulse. The carry output is 1 if T is 1 and Q is 1. 
A synchronous up counter is constructed as Figure 

14.52(b), which is simply the circuit of Figure 14.52(a) repeated.  
Note that the clock input is common to all stages, and the 
carry from one stage is the T input of the next. 
It will be seen that the T inputs, Tb, Tc, Td will be 1 when 

all the preceding outputs are 1. Tc will be 1, for example, 

when A and B are both 1. This is the condition when a 
counter stage should toggle, taking DCBA from, say, 0011 
to 0100. 
It is also possible to construct a synchronous down coun-

ter by counting the AND gate input of Figure 14.52(a) to  
�the Q output rather than the Q, and observing the counter 

state on the Q output. A synchronous up/down counter 
with selectable direction can be constructed as Figure 
14.53. If the direction line is a 1, gates 1, 2, 3 are enabled, 
the Q outputs pass to the next stage and the counter counts 

�up. If the direction line is a 0, gates 4, 5, 6 are enabled, the Q 
outputs pass to the next stage and the counter counts down. 

14.7.3 Non binary counters 

Counting to non binary bases is often required, a BCD 
count is probably the most common requirement. When 
the required count is a subset of a straight binary count, 
(e.g. BCD), the circuit of Figure 14.54(a) can be used. The 
counter output is decoded by external logic. When the 
counter reaches the desired maximum count the decoder 

Figure 14.52 Synchronous counters: (a) basic circuit for a synchronous counter; (b) four bit series connected synchronous up counter 

Figure 14.53 Synchronous selectable up/down counter 
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Figure 14.54 Non binary counters: (a) principle of operation; (b) logic diagram for a BCD up counter; (c) counter operation 

output forces the counter to its zero state (which is 0000 for 
a BCD counter, but need not be for other counters). 
A single BCD stage constructed on these principles is 

shown on Figure 14.54(b). The circuit shown is a ripple 
counter, but could equally well be a synchronous counter. 
Gate A detects a count of ten (binary 1010) and resets the 
counter to zero via direct reset inputs on the JK flip flops. 
Waveforms are shown on Figure 14.54(c). 
Where a non binary count is needed (e.g. a Gray code 

count), it is best to use synchronous counters and an 
arrangement similar to Figure 14.55. This is drawn for D 
type flip flops, but JK based design is similar. 
A combinational logic network looks at the counter out-

puts and sets the D inputs for the next state. If the counter, 
say, was required to step from 1101 to 0011, the combina-
tional logic output to the D inputs would be 0011 for an 
input of 1101. Effectively there are four combinational 
circuits in the network, one for each D input. 

14.7.4 Shift registers 

A simple shift register is shown on Figure 14.56(a). Data 
applied to the serial input, S in, will move one place to the 
right on each clock pulse as shown on the timing diagram of 
Figure 14.56(b). 
Shift registers are used for parallel/serial and serial/ 

parallel conversions. They are also the basis of multiplica-
tion and division circuits as a shift of one place towards the 
MSB is equivalent to a multiplication by 2, and one place 
towards the LSB an integer division of 2. 

14.8 Sequencing and event driven logic 

Many logic systems are driven by randomly occurring 
external events, and follow a sequence of operations. In such 
systems, the output states do not depend solely on the input 
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Figure 14.55 Generalised synchronous non binary counter using D type flip flops. Any count pattern can be produced with this arrangement. 
The principle can also be implemented using JK flips flops. 

Figure 14.56 Simple shift register constructed from D type flip flops: (a) logic diagram; (b) operation 

states, but also on what the system was doing last. These 
types of systems are said to be sequencing and event driven 
logic. Sequencing logic is designed using a state diagram. 
This shows the possible conditions the system can be in, 
the conditions that are required to move from one state to 
the next, and the outputs required in each state. 
Figure 14.57 shows a possible state diagram for a gas 

burner control. When the start PB is pressed a 15 second 
air purge is given (set by timer 1). The pilot valve is opened, 
and the igniter started for 4 seconds (timer 2). If, at the end 
of this time, the flame detector shows the flame to be lit, the 
main gas valve is opened. At any time the stop button ter-
minates the sequence. A non valid signal from the flame 
detector (i.e. flame present in states 1 and 2 or no flame in 

state 4) puts the system to an alarm state, as does the 
incorrect signal from the air flow switch. Note that these 
are checked for being `unfrigged' at the start of the sequence. 
Event driven logic is built around flip flops, usually one 

for each state. The flip flop corresponding to state 4 is 
shown on Figure 14.58(a), and is set by the required conditions 
from state 3 and reset by the possible next states (1 and 5). 
Outputs are simply obtained by ORing the necessary 
states. The pilot output, shown on Figure 14.58(b), is simply 
State 3 OR State 4. 
It is possible to minimise event driven circuits to use fewer 

flip flops, but such an approach is usually not required 
as it makes the operation more difficult to understand. 
A straightforward state diagram similar to Figure 14.57 
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Figure 14.57 State diagram and output table for control of a gas burner 

Figure 14.58 Implementation of a state diagram: (a) one of the five states of the gas burner control. Each state is represented by a flip flop and is 
set by transitions to the state and reset by transitions from the state; (b) one of the seven outputs. Each is simply an OR function of the states in 
which it is energised. The pilot valve is energised in states 3 and 4. 

is easy to design, understand and modify and simplifies 
fault finding for maintenance personnel. 
State diagrams are being formalised by the International 

Electrotechnical Commission (IEC) and the British 
Standards Institute (BSI), and already exist with the 
French Standard Grafset. These are basically identical to 
the approach outlined above, but introduce the idea of 
parallel routes which can be operated at the same time. 
Figure 14.59(a) is called a divergence; state 0 can lead to 
state 1 for condition `s' OR to state 2 for condition `t' with 
transitions `s' and `t' mutually exclusive. This is the form 
of the state diagrams described so far. 
Figure 14.59(b) is  a  simultaneous divergence, where state 0 

will lead to state 1 AND state 2 simultaneously for transition 
`u'. States 1 and 2 can now run further sequences in parallel. 

Figure 14.59(c) again corresponds to the state diagrams 
described earlier, and is known as a convergence. The  
sequence can go from state 5 to state 7 if transition `v' is 
true OR from state 6 to state 7 if transition `w' is true. 

Figure 14.59(d ) is called a simultaneous convergence (note 
again the double horizontal line) state 7 will be entered if 
the left-hand branch is in state 5 AND the right-hand 
branch is in state 6 AND transition `x' is true. 
The state diagram is so powerful that most medium size 

PLCs include it in their programming language in one form 
or another. Telemecanique give it the name Grafcet (with a 
`c'), others use the name Sequential Function Chart (SFC) 
(Allen Bradley) or Function Block (Siemens). The IEC have 
adopted state diagrams as one of their formalised methods 
of PLC programming in IEC 1131. 
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Figure 14.59 State transition diagram symbols: (a) divergence; (b) simultaneous divergence; (c) convergence; (d) simultaneous convergence 

14.9 Analog interfacing 

14.9.1 Digital to analog conversion (DAC) 

A binary number can represent an analog voltage. An 8 bit 
number, for example, represents a decimal number from 0 
to 255 (or �128 to �127 if two's complement representation 
is used). An 8 bit number could therefore represent a 
voltage from 0 to 2.55 V, say, with a resolution of 10 mV. 
A device which converted a digital number to an analog 
voltage is called a digital to analog converter, or DAC. 
Common DAC circuits are shown on Figure 14.60, in  

each case the output voltage is related to the binary pattern 

on the switches. In practice, FETs are used for the switches, 
and usually an IC DAC is used. The R-2R ladder circuit is 
particularly well suited to IC construction. 

14.9.2 Analog to digital converters (ADCs) 

There are several circuits which convert an analog voltage 
to its binary equivalent. The two commonest are the ramp 
ADC and the successive approximation ADC. Both of these 
compare the output voltage from a DAC with the input 
voltage. 

Figure 14.60 Digital to analog converters: (a) weighted resistors with OpAmp adder; (b) R-2R ladder 
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Figure 14.61 Ramp ADC block diagram 

The operation of the ramp ADC, shown on Figure 14.61, 
commences with a start command which sets FF1 and resets 
the counter to zero. FF1 gates pulses to which counts up. 
The counter output is connected to a DAC whose output 
ramps up as the counter counts up. The DAC output is 
compared with the input voltage, and when the two are 
equal FF1 is reset, blocking further pulses and indicating 
the conversion is complete. The binary number in the coun-
ter now represents the input voltage. A variation of the 
ramp ADC, known as a tracking ADC uses an up/down 
counter that continuously follows the input voltage. 
The ramp ADC is simple and cheap, but relatively slow 

(typical conversion time >1 mS). Where high speed, or high 
accuracy is required a successive approximation ADC is 
used. The circuit, shown on Figure 14.62 uses an ordered 
trial and error process. The sequence, shown on Figure 
14.63, starts with the register cleared. The MSB is set, and 
the comparator output examined. If the comparator shows 
the DAC output is less than, or equal to, Vin, the bit is left 
set. If the DAC output is greater than Vin, the bit is reset. 
Each bit is similarly tested, in order from MSB to LSB, caus-
ing the DAC output to quickly home in on Vin as shown. In 
total the number of comparisons is equal to the number of 
bits, so the conversion is much faster than the ramp ADC. 
Successive approximation ADCs are fast (conversion 

times of a few mS) and accurate (0.01% is easily achievable). 
Unlike the ramp ADC, the conversion time is constant. 
They are, however, more complex and expensive than the 
simpler ramp ADC. 
The flash converter is the fastest ADC available, but is not 

widely used for high accuracy applications because the cir-
cuit complexity increases rapidly with the number of bits. 
Commercial eight bit flash encoders such as the MC10135 
are to be found in digital television and digital audio appli-
cations. Figure 14.64 shows a simple three bit converter with 
a resolution of one part in eight. 
The input signal is compared simultaneously with seven 

equally spaced voltages, for our simple example these are 
1, 2, 3 V etc. If, for example, the input signal is 3.6 V, com-
parators a, b and c will all give a `1' output, and comparators 
d to g will give a `0' output. 
The outputs from the seven comparators are converted to 

a three bit binary output by an encoder. This is simple com-
binational logic, output C, for example, being given by 

C �( d �( e �( f �( g 

The complexity of the combinational logic goes up consid-
erably with the number of bits and the degree of internal 
checking required. 
The flash converter is very fast with conversion times of a 

few nanoseconds, the only constraint being the propagation 

Figure 14.62 Successive approximation ADC block diagram 

Figure 14.63 Operation of a successive approximation ADC 

delays through the comparators and the encoder logic. It is, 
however, prone to giving invalid transitory states if the 
input signal is varying, going, say, 011 to 111 to 100 for a 
input change from three to four volts. For this reason a 
flash converter is usually preceded by a sample and hold 
circuit to freeze the analog input circuit whilst the measure-
ment is being made. 

14.10 Practical considerations 

Real life digital systems have to connect to the outside world, 
and this can often bring problems when noise and effects 
such as contact bounce are encountered. Precautions also 
need to be taken against inadvertent introduction of high 
voltages into logic systems via inter-cable faults on the 
plant. 
All signals between a logic system and the outside world 

should use a technique called opto isolation when cable 
lengths are longer than a few metres. Figure 14.65 shows 
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Figure 14.64 Three bit flash ADC 

typical input and output circuits. In both, the signal 
is electrically isolated by using a coupled LED and photo-
transistor. Because the plant side power supply and digital 
power supply are totally separate, the system will withstand 
voltages of up to 1 kV without damage to the digital equip-
ment (although such voltages would probably damage the 
plant side components of course). The absence of ground 
loops and relatively high current levels (around 20 mA) 
also gives excellent noise immunity. 

Practical considerations 14/35 

Opto isolation devices (such as the TIL 107) are usually 
constructed in a 6 pin IC, and are characterised by a current 
transfer ratio. This is defined as the ratio between the photo 
transistor collector current to the LED current. A typical 
value is 0.3, so 20 mA input current will give 6 mA, output 
current. If Darlington phototransistors are used, transfer 
ratios as high as 1.2 can be obtained. 
Noise can also enter digital systems via the power supply 

rails so excellent filtering is necessary, both the d.c. side 
and (with LC filter) on the a.c. supply side. It is particularly 
important to adopt a sensible segregation of 0 V rails such 
that digital logic, relays/lamps and analog circuits have 
separate 0 V returns to some common earth points. Under 
no circumstances should high currents flow along logic 0 V 
lines, or the logic 0 V be taken outside its own cubicle. 
Digital ICs can also generate their own noise on power 

supplies (TTL is particularly troublesome). It is therefore 
highly desirable to provide each IC with its own local 
0.01 mF capacitor. A single large value electrolytic has no 
effect as the noise is caused by rapid di/dt and the PCB 
track inductance. 
Mechanical contacts from switches, relays etc, do not make 

instantly but `bounce' rapidly for 1 to 4 mS due to dirt and 
the uneven constant surfaces. In many purely combinational 
logic systems this does not matter, but where counting, 
sequencing or arithmetic circuits are used, trouble can ensue. 
Contact bounce can be removed by RC filters, but the 

best solution is to use a bounce removing flip flop as 
Figure 14.66. Provided break before make contacts are used, 
the circuit gives totally bounce free true and complement 

Figure 14.65 Optical isolation between digital system and outside world: (a) d.c. input circuit; (b) a.c. input circuit; (c) d.c. output circuit; (d) a.c. 
output circuit 
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Figure 14.66 Bounce removing flip-flop 

outputs. If the contacts are some distance from the digital 
system opto isolation should, of course, be used before the 
flip flop. 

14.11 Data sheet notations 

The following abbreviations are commonly (but by no 
means universally) used on logic data sheets: 

A, B, C, D . . . Data inputs. Where a number is implied, 
A �( 1, B �( 4, C �( 8 etc. 

a, b, c, d, e, f, g Seven segments display signals 
BCD Binary coded decimal 
BI Blanking input 
C Capacitor for timer or monostable 
Cin, Cout Carry in, Carry out 
CD Count down input (on up/down counter) 
CEP Count enable parallel input 
CER Count enable ripple input 
CK Clock (often with >& symbol) 
CS Chip select 
CU Count up input (on up/down counter) 
CY Carry out 
D Data input on D type flip flop 
DEC Decrement input (on up/down counter) 
DIS Disable tri-state output 
EN Enable 
GND Ground or 0 V 
I/O Input/output (often on bidirectional buffer) 
INC Increment input (on up/down counters) 
INH Inhibit 
J, K Inputs on JK flip flop 
LE Latch enable 

LT Lamp test 
MR Master reset 
OEN Output enable (for tri-state gate or buffer) 
OF, OV Overflow 
PE Parallel enable 
PH Phase input for liquid crystal display drivers 
P/S Parallel/Serial selection 
Qn Output with weighting (e.g. Qb) 
R Reset or Resistor for timer or monostable 
RBI Ripple blanking input 
RBO Ripple blanking output 
RC Resistor/capacitor for timer or monostable 
RCO Ripple carry out 
S Set input or sum output 
SDL Serial input data to shift register shift left 
SDR Serial input data to shift register shift right 
Si Serial input 
SQ (or Qs)Serial output 
SR Synchronous reset 
ST Strobe 
T Trigger 
TC Terminal count output 
U/D Up/Down mode control for counter 
Vcc Positive supply 
Vdd Positive supply 
Vss Usually 0 V 
Vee Negative supply 
WE Write enable 
X Data inputs for data selector 

Schmitt trigger action 
� Sum output 
>& Clock input 
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