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16.1 Introduction 

16.1.1 The computer in control 

A computer can be considered as a device that follows 
predetermined instructions to manipulate input data in 
order to produce new output data as summarised on 
Figure 16.1(a). Early computer systems tended to be based 
on commercial functions; payroll, accountancy, banking and 
similar activities. The operations tended to be batch pro-
cesses; a daily update of stores stock for example. 
A computer can also be used as part of a control system 

as Figure 16.1(b). The input data will be the operator's com-
mands and signals from the plant (limit switches, flows, 
temperatures). The output data are control actions to the 
plant and status displays to the operator. The instructions 
will define what action is to be taken as the input data (from 
both the plant and the operator) changes. 
The first industrial computer application was probably 

a system installed in an oil refinery in Port Arthur USA 
in 1959. The reliability and mean time between failure of 
computers at this time meant that little actual control was 
performed by the computer, and its role approximated to 
a simple monitoring subsystem. 

16.1.2 Requirements for industrial control 

Industrial control has rather different requirements than 
other computer applications. It is worth examining these in 
some detail. 

A conventional computer takes data, usually from a key-
board, and outputs data to a screen or printer. The data 
being manipulated will generally be characters or numbers 
(e.g. item names and quantities held in a stores stock list). 
An industrial control computer is very different. Its inputs 

come from a vast number of devices. Although some of 
these will be numeric (flows, temperature, pressures and 
similar analog signals) the majority will be single bit, on/off, 
digital signals representing valves, limit switches, motor 
contactors etc. 
There will also be a similar large amount of digital and 

analog output signals. A very small control system may 
have connections to about twenty input and output signals; 
figures of over two hundred connections are quite common 
on medium sized systems. 
Although it is possible to connect this quantity of signals 

into a conventional machine, it requires non-standard 
connections and external boxes. Similarly, although pro-
gramming for a large amount of input and output signals 
can be done in Pascal, BASIC or C, the languages are being 
used for a purpose for which they were not really designed, 
and the result can be very ungainly. 
In Figure 16.2(a), for example, we have a simple motor starter. 

This could be connected as a computer driven circuit as Figure 
16.2(b). The two inputs are identified by addresses 1 and 2, 
with the output (the relay starter) being given the address 10. 
If we assume a program function bitread (N) exists 

which gives the state (on/off ) of address N, and  a function  
bitwrite (M, var) which sends the state of program variable 
var to address M, we could give the actions of Figure 16.2 by 

Figure 16.1 The computer as part of an industrial control system: (a) a simple overview of a computer; (b) the computer as part of a control system 

Figure 16.2 Comparison of hardwire and computer based systems: (a) hardwire motor starter; (b) computer based motor starter 
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where start, stop and run are one bit variables. The 
program is not very clear, however, and we have just three 
connections. 
An industrial control program rarely stays the same for 

the whole of its life. There are always modifications to cover 
changes in the operations of the plant. These changes will be 
made by plant maintenance staff, and must be made with 
minimal (preferably none) interruptions to the plant pro-
duction. Adding a second stop button and a second start 
button into Figure 16.2 would not be a simple task. 
In general, computer control is done in real time, i.e. the 

computer has to respond to random events as they occur. 
An operator expects a motor to start (and more important 
to stop!) within a fraction of a second of a button being 
pressed. Although commercial computing needs fast com-
puters, it is unlikely that the difference between a one sec-
ond and two second computation time for a spreadsheet 
would be noticed by the user. Such a difference would be 
unacceptable for industrial control. 
Time itself is often part of the control strategy (e.g. start 

air fan, wait 10 secs for air purge, open pilot gas valve, wait 
0.5 s, start ignition spark, wait 2.5 s, if flame present open 
main gas valve). Such sequences are difficult to write with 
conventional languages. 
Most control faults are caused by external items (limit 

switches, solenoids and similar devices) and not by failures 
within the central control itself. The permission to start a 
plant, for example, could rely on signals involving cooling 
water flows, lubrication pressure and temperatures all being 
within allowable ranges. For quick fault finding the 
maintenance staff must be able to monitor the action of 
the computer program whilst it is running. If, as is quite 
common, there are ten interlock signals which allow a motor 
to start, the maintenance staff will need to be able to check 
these quickly in the event of a fault. With a conventional 
computer, this could only be achieved with yet more com-
plex programming. 
The power supply in an industrial site is shared with 

many antisocial loads; large motors stopping and starting, 
thyristor drives which put spikes and harmonic frequencies 
onto the mains supply. To a human these are perceived 
as light flicker; to a computer they can result in storage 
corruption or even machine failure. 
An industrial computer must therefore be able to live 

with a `dirty' mains supply, and should also be capable of 
responding sensibly following a total supply interruption. 
Some outputs must go back to the state they were in before 
the loss of supply, others will need to turn off or on until an 
operator takes corrective action. The designer must have 
the facility to define what happens when the system powers 
up from cold. 
The final considerations are environmental. A large 

mainframe computer generally sits in an air conditioned 
room at a steady 20 �C with carefully controlled humidity. 
A desk top PC will normally live in a fairly constant office 
environment because human beings do not work well at 
extremes. An industrial computer, however, will probably 
have to operate away from people in a normal electrical 

substation with temperatures as low as �10 �C after  a winter  
shutdown, and possibly over 40 �C in the height of summer. 
Even worse, these temperature variations lead to a constant 
expansion and contraction of components which can lead to 
early failure if the design has not taken this factor into 
account. 
To these temperature changes must be added dust and 

dirt. Very few industrial processes are clean, and the dust 
gets everywhere. The dust will work itself into connectors, 
and if these are not of a highest quality, intermittent faults 
will occur which can be very difficult to find. 
In most computer applications, a programming error or a 

machine fault can often be humorous (bills and reminders 
for 0p) or at worse expensive and embarrassing. When 
a computer controlling a plant fails, or a programmer 
misunderstands the plants operation, the result could be 
injuries or fatalities. It behoves everyone to take extreme 
care with the design. 
Our requirements for industrial control computers are 

very demanding, and it is worth summarising them: 

.	 They should be designed to survive in an industrial 
environment with all that this implies for temperature, 
dirt and poor quality mains supply. 

.	 They should be capable of dealing with bit form digital 
input/output signals at the usual voltages encountered 
in industry (24 V d.c. to 240 V a.c.) plus analog input/ 
output signals. The expansion of the I/O should be 
simple and straightforward. 

.	 The programming language should be understandable 
by maintenance staff (such as electricians) who have no 
computer training. Programming changes should be 
easy to perform in a constantly changing plant. 

.	 It must be possible to monitor the plant operation whilst 
it is running to assist fault finding. It should be appre-
ciated that most faults will be in external equipment 
such as plant mounted limit switches, actuators and sen-
sors, and it should be possible to observe the action of 
these from the control computer. 

.	 The system should operate sufficiently fast for real-time 
control. In practice, `sufficiently fast' means a response 
time of around 0.1 sec, but this can vary dependent on 
the application and the controller used. 

. The user should be protected from computer jargon. 

. Safety must be a prime consideration. 

16.1.3 Enter the PLC 

In the late 1960s the American motor car manufacturer 
General Motors was interested in the application of com-
puters to replace the relay sequencing used in the control of 
its automated car plants. In 1969 it produced a specification 
for an industrial computer similar to that outlined at the 
end of the previous section. 
Two independent companies, Bedford Associates (later 

called Modicon) and Allen Bradley (now owned by 
Rockwell) responded to General Motors specifications. 
Each produced a computer system similar to Figure 16.3 
which bore little resemblance to the commercial mini-
computers of the day. 
The computer itself, called the central processor, was 

designed to live in an industrial environment, and was 
connected to the outside world via racks into which input, 
or output cards could be plugged. 
Each input or output card could connect to 16 signals. 

A typical rack would contain eight cards and the processor 
could connect to eight racks, allowing connection to 1024 
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Figure 16.3 The component parts of an early PLC system 

devices. It is very important to appreciate that the card allo-
cations were the user's choice, allowing great flexibility. 
The most radical idea, however, was a programming 

language based on a relay schematic diagram, with inputs 
(from limit switches, pushbuttons, etc.) represented by relay 
contacts, and outputs (to solenoids, motor starters, lamps, 
etc.) represented by relay coils. Figure 16.4(a) shows a 
simple hydraulic cylinder which can be extended or 
retracted by pushbuttons. Its stroke is set by limit switches 
which open at the end of travel, and the solenoids can only 
be operated if the hydraulic pump is running. This would 
be controlled by the computer program of Figure 16.4(b) 
which is identical to the relay circuit needed to control the 
cylinder. These programs look like the rungs on a ladder, 
and were consequently called `Ladder Diagrams'. 
The program was entered via a programming terminal 

with keys showing relay symbols (normally open/normally 
closed contacts, coils, timers, counters, parallel branches, 
etc.), with which a maintenance electrician would be famil-
iar. Figure 16.5 shows the programmer's keyboard for an 
early PLC. The meaning of the majority of the keys should 
be obvious to any maintenance electrician. The program, 
shown exactly on the screen as Figure 16.4(b), would high-
light energised contacts and coils allowing the programming 
terminal to be used for simple faultfinding. 
The name given to these machines was Programmable 

Controllers or PCs. The name Programmable Logic 
Controller or PLC was also used, but this is, strictly, a regis-
tered trade mark of the Allen Bradley Company, now part 
of Rockwell. Unfortunately in more recent times the letters 
PC have come to be used for Personal Computer, and 
confusingly the worlds of programmable controllers and 
personal computers overlap where portable and lap-top 
computers are now used as programming terminals. To avoid 
confusion, we shall use PLC for a programmable controller 
and PC for a personal computer. 

16.1.4 The advantages of PLC control 

Any control system goes through several stages from 
conception to a working plant. 
The first stage is Design when the required plant is 

studied and the control strategies decided. With conven-
tional systems every `i ' must be dotted before construction 
can start. With a PLC system all that is needed is a possibly 
(usually!) vague idea of the size of the machine and the 
I/O requirements (so many inputs and outputs). The cost 
of the input and output cards are cheap at this stage, so a 
healthy spare capacity can be built in to allow for the inevit-
able omissions and future developments. 
Next comes Construction. With conventional schemes, 

every job is a `one-off ' with inevitable delays and costs. 
A PLC system is simply bolted together from standard parts. 
The next stage is Installation, a tedious and expensive 

business as sensors, actuators, limit switches and operator 
controls are cabled. A distributed PLC system (discussed 
in Section 16.5) using serial links and pre-built and tested 
desks can simplify installation and bring huge cost benefits. 
The majority of the PLC program is usually written at this 
stage. 
Finally comes Commissioning, and this is where the real 

advantages are found. No plant ever works first time. 
Human nature being what it is, there will be some over-
sights. (We need a limit switch to only allow feeding when 
the discharge valve is `shut' or `Whoops, didn't we say the 
loading valve is energised to UNLOAD on this system' and 
so on.) Changes to conventional systems are time consum-
ing and expensive. Provided the designer of the PLC 
systems has built in spare memory capacity, spare I/O and 
a few spare cores in multi-core cables, most changes can be 
made quickly and relatively cheaply. An added bonus is 
that all changes are inherently recorded in the PLC's 
program and commissioning modifications do not go 
unrecorded. 



//integras/b&h/Eer/Final_06-09-02/eerc016

16/6 Programmable controllers 

Retract SOV 

Extend PB 

Retract PB 

Retract PB 

Extend PB 

I01 

(a) 

(b) 

Retract PB 

running 

Pump 
running 

Pump 
LS 

Front 
LS 

Back 

PLC

In
pu

t c
ar

d

O
ut

pu
t c

ar
d 

Extend PB 

Extend SOV 

Extend SOV 

Retract SOV 

Extend SOV 

Retract SOV 

Made if 
signal 
present 

Made if 
signal 
absent 

Output 
to plant 

LS 
Back 

LS 
Front 

Figure 16.4 

Pump 
running 

A simple PLC application: (a) a hydraulic cylinder controlled by a PLC; (b) the `Ladder Diagram' program used to control the cylinder 

There is an additional fifth stage called Maintenance 
which starts once the plant is working and is handed over 
to production. All plants have faults, and most tend to 
spend the majority of their time in some form of failure 
mode. A PLC system provides a very powerful tool for 
assisting with fault diagnosis. 
A plant is also subject to many changes during its life to 

speed production, ease breakdowns or because of changes 
in its requirements. A PLC system can be changed so easily 
that modifications are simple and the PLC program will 
automatically document the changes that have been made. 

16.2 The programmable controller 

16.2.1 Modern PLC systems 

This chapter is written around five manufacturers' ranges: 

.	 The Allen Bradley PLC-5 series. Allen Bradley, 
now owned by Rockwell, were one of the original PLC 
originators (and actually has the US copyright on the 
name PLC). They have been responsible for much of 
the development of the ideas used in PLCs and have 
succeeded in maintaining a fair degree of upward com-
patibility from their earliest machine without restricting 
the features of the latest. 

.	 The Siemens Simatic 55 range which is probably the 
commonest PLC in mainland Europe. 

.	 The British GEM-80, originally designed by GEC from 
a long association with industrial computers dating 
back to English Electric. This part of GEC is now 

known as CEGELEC and is part of a French group in 
which Alsthom are a major shareholder. 

. The ASEA Master System, now manufactured by the 
ABB company formed by the merger of ASEA and 
Brown Boveri. The Master system has features more akin 
to a conventional computer system and its programming 
language has some interesting and powerful features. 

The above four PLCs are shown on Figure 16.6. Many 
PLC systems are now very small and as an example of 
this bottom end of the market we shall also consider the 
Japanese Mitsubishi F2-40. 

16.2.2 I/O connections 

Internally a computer usually operates at 5 V d.c. The exter-
nal devices (solenoids, motor starters, limit switches, etc.) 
operate at voltages up to 110 V a.c. The mixing of these 
two voltages will cause irreparable damage to the PLC 
electronics. A less obvious problem can occur from elec-
trical `noise' introduced into the PLC from voltage 
spikes, caused by interference on signals lines, or from 
load currents flowing in a.c. neutral or d.c. return lines. 
Differences in earth potential between the PLC cubicle and 
outside plant can also cause problems. 
There are obviously very good reasons for separating the 

plant supplies from the PLC supplies with some form of 
barrier to ensure that the PLC cannot be adversely affected 
by anything happening on the plant. Even a cable fault 
putting 415 V a.c. onto a d.c. input would only damage the 
input card; the PLC itself (and the other cards in 
the system) would not suffer. 
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1. NumericsÐprovides addresses and decimal or hexadecimal values for instructions. It also provides force instructions. 
2. Relay-TypeÐexamines and controls the status of individual bits in specified memory areas. 
3. Timer/CounterÐallows the user to select various time-incremented and count-incremented and decremented functions. 
4. Data ManipulationÐused to transfer and compare BCD or octal values in the user program. 
5. ArithmeticÐperforms the four indicated math functions. 
6. EditingÐused to locate, display and change instructions in the user program. 
7. ControlÐdirects the operation of the industrial terminal and its communication with the PLC-2 family processors and peripherals. Also provides 
HELP information. 
8. Block Transfer InstructionsÐused to program block transfer Instructions in block format. 
9. Shift RegisterÐused to shift a word (all 16 bits) up or down one word in the shift register file. 

± used to shift a bit in the shift register file to the left or right one position. 
± used to create FIFO stacks. 

10. Sequencer InstructionsÐused to establish and maintain user sequencer tables. 
11. File InstructionsÐused to establish and manipulate user files. 

Figure 16.5 A programming keyboard from an early PLC programming terminal. The link between the keys and relay symbols can be clearly seen. 
Figure courtesy of Allen Bradley 

Figure 16.6 Four medium sized PLCs: (a) the Allen Bradley PLC-5; (b) the Siemens 115U; (c) the CEGELEC GEM-80; (d) the ABB Master 
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Figure 16.6 (continued) 
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This isolation is achieved by optical isolators consisting 
of a linked light emitting diode and photoelectric transistor. 
When current is passed through the diode it emits light 
causing the transistor to switch on. Because there is no elec-
trical connections between the diode and the transistor, very 
good electrical isolation (typically 1±4 KV) is achieved. 
A d.c. input can be provided as Figure 16.7(a). When the 

push button is pressed, current will flow through D1 caus-
ing TR1 to turn on passing the signal to the PLC internal 
logic. Diode D2 is a light emitting diode used as a fault 
finding aid to show when the input signal is present. Such 
indicators are present on almost all PLC input and output 
cards. The resistor R sets the voltage range of the input. 
D.c. input cards are usually available for three voltage 
ranges; 5 V (TTL), 12±24 V, 24±50 V. 
A possible a.c. input circuit is shown on Figure 16.7(b). The 

bridge rectifier is used to convert the a.c. to full wave rectified 
d.c. Resistor R2 and capacitor C1 act as a filter (typically 
50 ms time constant) to give a clean signal to the PLC logic. 
As before a neon LP1 acts as an input signal indicator for 
fault finding, and resistor R1 sets the voltage range. 
Output connections also require some form of isolation 

barrier to limit damage from the inevitable plant faults and 
to stop electrical ̀ noise' corrupting the processor's operations. 
Interference can be more of a problem on outputs because 

higher currents are being controlled by the cards and the 
loads (solenoids and relay coils) are often inductive. 
In Figure 16.8, eight outputs are fed from a common 

supply, which originates local to the PLC cubicle (but separate 
from the supply to the PLC itself). This arrangement is the 
simplest and the cheapest, to install. Each output has its own 
individual fuse protection on the card and a common circuit 
breaker. It is important to design the system so that a fault, 
say, on load 3 blows the fuse FS3 but does not trip the supply 
to the whole card shutting down every output. This is known 
as `discrimination'. 
Contacts have been shown on the outputs in Figure 16.8. 

Relay outputs can be used (and do give the required isolation) 
but are not particularly common. A relay is an electromagnetic 
device with moving parts and hence a finite limited life. 
A purely electronic device will have greater reliability. 
Less obviously, though, a relay driven inductive load can 
generate troublesome interference and lead to early 
contact failure. 
A transistor output circuit is shown on Figure 16.9(a). 

Opto-isolation is again used to give the necessary separation 
between the plant and the PLC system. Diode D1 acts as a 
spike suppression diode to reduce the voltage spike encoun-
tered with inductive loads as shown on Figure 16.9(b). The 
output state can be observed on LED1. Figure 16.9(a) is  a  

Figure 16.7 Optical isolation of input signals: (a) d.c. input; (b) a.c. input 
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Figure 16.8 Schematic of an 8 way output card with common supply 

current sourcing output. If NPN transistors are used, 
a current sinking card can be made as Figure 16.9(c). 
A.c. output cards invariably use triacs. a typical circuit 

being shown on Figure 16.10. Triacs have the advantage 
that they can be made to turn on at zero voltage and inher-
ently turn off at zero current in the load. The zero current 
turn off eliminates the spike interference caused by breaking 
the current through an inductive load. If possible, all a.c. 
loads should be driven from triacs rather than relays. 
An output card will have a limit to the current it can sup-

ply, usually set by the printed circuit board tracks rather than 
the output devices. An individual output current will be set 
for each output (typically 2 A) and a total overall output 
(typically 6 A). Usually the total allowed for the card current 
is lower than the sum of the allowed individual outputs. 

16.2.3 Remote I/O 

So far we have assumed that a PLC consists of a processor 
unit and a collection of I/O cards mounted in local racks. 
Early PLCs were arranged like this, but in a large and 
scattered plant, all signals had to be brought back to some 
central point in expensive multi-core cables. This also 
makes commissioning and fault finding rather difficult, as 
signals can only be monitored effectively at a point distant 
from the plant device being tested. 
In all bar the smallest and cheapest systems, PLC manu-

facturers therefore provide the ability to mount I/O racks 
remote from the processor, and linked with simple (and 
cheap) screened single pair or fibre optic cable. Racks can 
then be mounted up to several kilometres away from the 
processor. 

There are many benefits from this. It obviously reduces 
cable costs as racks can be laid out local to the plant devices 
and only short multi-core cable runs are needed. The long 
runs will only be the communication cables (which are 
cheap, easy to install and only have a few cores to terminate 
at each end) and hardwire safety signals. 
Less obviously, remote I/O allows complete plant units to 

be constructed, wired to a built in PLC rack, and tested off 
site prior to delivery and installation. Typical examples are 
hydraulic skids, desks and even complete control pulpits. 
The use of remote I/O in this way can greatly reduce instal-
lation and commissioning time and cost. 
The use of serial communication for remote I/O means 

some form of sequential scan must be used to read input 
and update outputs. This scan, typically 30±50 ms, intro-
duces a small delay in the response to signals discussed 
further in the following section. 
If remote I/O is used, provision should be made for a 

program terminal to be connected local to each rack. It 
negates most of the benefits if the designer can only monitor 
the operation from a central control room several hundred 
metres from the plant. Fortunately, manufacturers have 
recognised this and most PLCs have programming 
terminals which can be remotely connected to the processor. 

16.2.4 The program scan 

A PLC program can be considered to behave as a perma-
nent running loop similar to Figure 16.11(a). The user's 
instructions are obeyed sequentially, and when the last 
instruction has been obeyed the operation starts again at the 
first instruction. A PLC does not, therefore, communicate 
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Figure 16.9 D.c. output circuits: (a) isolated output circuit, current sourcing; (b) the effect of an inductive load and the reason for including diode 
D1; (c) current sinking output 

continuously with the outside world, but acts, rather, by 
taking `snapshots'. 
The action of Figure 16.11(a) is called a program scan, 

and the period of the loop is called the program scan time. 
This depends on the size of the PLC program and the speed 
of the processor, but is typically 2±5 ms per K of program. 
Average scan times are usually around 10±50 ms. 
Figure 16.11(a) can be expanded to Figure 16.11(b). The 

PLC does NOT read inputs as needed (as implied by Figure 
16.11(a)) as this would be wasteful of time. At the start of 
the scan it reads the state of ALL the connected inputs and 
stores their state in the PLC memory. When the PLC pro-
gram accesses an input, it reads the input state as it was at 
the start of the current program scan. 
As the PLC program is obeyed through the scan, it again 

does not change outputs instantly. An area of the PLC's 
memory corresponding to the outputs is changed by the 

program, then ALL the outputs are updated simultaneously 
at the end of the scan. The action is thus: 

Read Inputs, 
Scan Program, 
Update Outputs. 

The PLC memory can therefore be considered to consist 
of four areas as shown on Figure 16.11(c). The inputs are 
read into an input mimic area at the start of the scan, and 
the outputs updated from the output mimic area at the end 
of the scan. There will be an area of memory reserved for 
internal signals which are used by the program but are not 
connected directly to the outside world (timers, counters, 
storage bits (e.g. fault signals) and so on). These three 
areas are often referred to as the data table (Allen Bradley) 
or the database (ASEA/ABB). 
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Figure 16.10 A.c. isolated output. The triac switches on at zero voltage and off at zero current which minimises interference 

Figure 16.11 The program scan and memory organisation: (a) simple view of PLC operation; (b) more detailed view of PLC operation; (c) memory 
organisation 

This data area is smaller than may be at first thought. 
A medium size PLC system will have around 1000 inputs and 
outputs. Stored as individual bits in a PLC with a 16 bit 
word this corresponds to just over 60 storage locations. An 
analog value read from the plant or written to the plant will 
take one word. Timers and counters take two words (one 
for the value, and one for the preset) and sixteen internal 
storage bits take just one word. The majority of the store 
therefore, is taken up by the fourth area, the program itself. 
The program scan limits the speed of signals to which a 

PLC can respond. In Figure 16.12(a) a PLC is being used to 
count a series of fast pulses, with the pulse rate slower than 
the scan rate. The PLC counts correctly. In Figure 16.12(b) 
the pulse rate is faster than the scan rate and the PLC starts 
to miscount and miss pulses. In the extreme case of Figure 
16.12(c) whole blocks of pulses are totally ignored. 
In general, any input signal a PLC reads must be present 

for longer than the scan time; shorter pulses may be read if 
they happen to be present at the right time but this cannot 
be guaranteed. If pulse trains are being observed, the pulse 
frequency must be slower than 1/(2 �( scan period). A PLC 
with a scan period of 40 ms can, in theory, just about follow 
a pulse train of 1/(2 �( 0.04) �( 12.5 Hz. In practice other 

factors such as filters on the input cards have a significant 
effect and it always advisable to be conservative in speed 
estimates. 
Less obviously, the PLC scan can cause a random `skew' 

between inputs and outputs. In Figure 16.13 an input I is to 
cause an `immediate' output O. In the best case of Figure 
16.13(a), the input occurs just at the start of the scan, 
resulting in the energisation of the output one scan period 
later. In Figure 16.13(b) the input has arrived just after the 
inputs are read, and one whole scan is lost before the PLC 
`sees' the input, and the rest of the second scan passes before 
the output is energised. The response can thus vary between 
one and two scan periods. 
In the majority of applications this skew of a few tens of 

milliseconds is not important (it cannot be seen, for example, 
in the response of a plant to pushbuttons). Where fast actions 
are needed, however it can be crucial. If, for example, 
material travelling at 15 m/s is be cut to length by a PLC 
with the cut being triggered by a photocell a 30 ms scan time 
would result in a 0.03 �( 15 000 �( 450 mm variation in cut 
length. 
PLC manufacturers provide special cards (which are 

really small processors in their own right) for dealing with 
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Figure 16.12 The effect of program scan on a fast pulse train 

Figure 16.13 The effect of program scan on response time: (a) best case; (b) worst case 

this type of high speed application. We will return to these 
later in Section 16.4.8 
The layout of the PLC program itself can result in undesir-

able delays if the program logic flows against the PLC 
program scan. The PLC starts at the first instruction for each 
scan, and works its way through the instructions in a 
sequential manner to the end of the program when it does 
its output update, then goes to read its inputs and run 
through the program again. 
In Figure 16.14(a), an input I again causes an output O, 

but it goes through five steps first (it could be stepping a 
counter or seeing if some other required conditions are pre-
sent). The program logic, however, is flowing against the 
scan. On the first scan the input I causes event A. On the 
next scan event A causes event B and so on until after 5 
scans event D causes the output to energise. If the program 
had been arranged as Figure 16.14(b) the whole sequence 
would have occurred in one single scan. 
The failings of Figure 16.14(a) are self-evident, but the 

effect can often occur when the layout of the program is 
not carefully planned. The effect can also be used deliber-
ately to ensure sequences operate correctly. 

The effect of scan times can become even more complex 
when remote serially scanned I/O racks are present. These 
are generally read by an I/O scanner as Figure 16.15 but the 
remote I/O scan is not usually synchronised to the program 
scan. In this case with, say, a program scan of 30 ms and a 
remote I/O scan of 50 ms the fastest response to an input 
could be 30 ms, but the slowest response (with an input 
just missing the I/O scan and the I/O scan just missing 
the program scan and the programming scan just missing 
the I/O scan to update the output) could be 180 ms. 
PLC manufacturers offer many facilities to reduce the effect 

of scan times. Typical are intelligent high speed independent 
I/O cards and the ability to sectionalise the program into 
areas with different scan rates. 

16.3 Programming methods 

16.3.1 Introduction 

The programming language of a PLC will be used by engi-
neers, technicians and maintenance electricians. It should 
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Figure 16.14 Compounding of program scan delays: (a) logic flows against the scan, five scan times from input to output; (b) logic flows with 
program scan, output occurs in same program scan as input 

Figure 16.15 The effect of remote input/output scan times. The remote I/O scan usually free-runs and is not synchronised with the program scan 

therefore be based on techniques used in industry rather 
than techniques used in computer programming. In this 
section we shall look at the various ways of programming 
PLCs from different manufacturers. 

16.3.2 I/O identification 

The PLC program is concerned with connections to the 
outside plant, and these input and output devices need to 
be identified inside the program. Before we can examine 
how the program is written we will first discuss how various 
manufacturers treat the I/O. 
The earlier Figure 16.3 showed that a medium sized PLC 

system consists of several racks each containing cards, with 
each card interfacing generally with 8, 16 or 32 devices. I/O 
addressing is usually based on this rack/card/bit idea. 
The Allen Bradley PLC-5 family has a range of proces-

sors which can address up to 64 racks. Its medium size 5/25 
can have up to 8 racks. The rack containing the processor is 
automatically defined as rack 0, but the designer can allo-
cate addresses of the other racks (in the range 1±7) by set up 

switches. The racks other than rack 0 connect to the proces-
sor via a remote I/O serial communications cable. 
Each rack contains 16 card positions which are grouped 

in pairs called a `slot'. A 16 card rack thus contains eight 
slots, numbered 0±7. A slot can contain one 16 way input 
card and one 16 way output card OR two 8 way cards 
usually (but not necessarily) of the same type. 

The addressing for inputs is 

I:Rack Slot/Bit 

with bit being 2 digits. Allen Bradley use octal addressing 
for bits, so allowable numbers are 00±07 and 10±17. The 
address I:27/14 is input 14 (octal remember) on slot 7 
in rack 2. 

Outputs are addressed in a similar manner: 

O:Rack Slot/Bit 

so O:35/06 is output 6 in slot 5 of rack 2. Note that if 16 
way cards are used an input and an output can have the 
same rack/slot/bit address, being distinguished only by the 
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I: or the O:. With 8 way cards there can be no sharing or 
rack/slot/bit addressing. 
The digital I/O in Siemens 115 PLCs is arranged into 

groups of 8 bits, called a Byte. A signal is identified by its 
bit number (0±7) and its byte number (0±127). 

Inputs are denoted 

I<byte>.<bit>&

and outputs by 

Q<byte>.<bit>. 

I9.4 is thus an input with bit address 4 in byte 9, and 
Q63.6 is an output with bit address 6 in byte 63. 
Like Allen Bradley, Siemens use card slots in one or more 

racks. The cards are available in 16 bit (2 byte) or 32 bit 
(4 byte) form. A system can be built with local racks con-
nected via a parallel bus cable or as remote racks with a 
serial link. 
The simplest form of addressing is fixed slot where four 

bytes are assigned sequentially to each slot; 0±3 to the first 
slot, 4±7 to the next slot and so on. Input I12.4 is thus input 
bit 4 on the first byte of the card in slot 3 of the first rack. If 
16 bit (2 byte) cards are used with fixed (4 byte) addressing 
the upper 2 bytes in each slot are lost. 
In all bar the simplest system the user has the ability to 

assign byte addresses. This is known as variable slot addres-
sing. The first byte address and the range (2 byte for 16 bit 
cards or 4 byte for 32 bit cards) can be set independently for 
each slot by switches in the adaptor module in each rack. 
Although any legitimate combination can be set up, it is 
recommended that a logical order is used. 
Siemens use different notations in different countries 

with multi-lingual programming terminals. A common 
European standard is German, where E (for Eingang or 
input) is used for inputs (e.g. E4.7) and A (for Ausgang) 
used for outputs (e.g. A3.5). 
The GEM-80 again configures its I/O in terms of bits and 

slots within racks. The processor rack can contain 8 card 
positions, and additional I/O can be connected into 12 posi-
tion racks local to the processor connected via ribbon cable 
(called Basic I/O) or remotely via a serial link. 
The I/O is addressed in terms of 16 bit words, one word 

corresponding to one or two card positions, and the prefix 
A being used for inputs and B for outputs. The bit addres-
sing runs in decimal from 0 to 15. 

A3.12 is thus input bit 12 in word 3 and 

B5.04 is output bit 4 in word 5 

A word can only be an input or an output; duplication of 
word addresses is not allowed. I/O cards are available in 8 
bit, 16 bit and 32 bit form, so one slot can be half a word, 
one word or two words according to the cards being used. 
Individual slot addresses are set by rotary switches on 
the back plane of each rack. The user has a more or less 
free choice in this allocation, but as usual it is best to use a 
logical sequential progression. 
The ABB (originally ASEA) Master system is a more com-

plex system than any we have discussed so far. Its organ-
isation brings the user closer to the computer, and its 
language is more akin to the ideas used by programmers. 
If the PLCs discussed so far are taken to be represented 
by the home computer language BASIC, the ABB Master 
is analogous to PASCAL or C. This comparison is actually 
closer than might, at first, be thought. BASIC is quick and 
easy to use, but can de-generate into a web of spaghetti 

programming if care is not taken. PASCAL and C are 
more powerful but everything has to be declared and the 
language forces organisation and structure on the user. 
The I/O cards are NOT identified by position in the rack, 

but by an address set on the card by a small plug with solder 
links. The I/O addressing does not, therefore, relate to card 
position, and a card can, in theory, be moved about without 
changing its operation. 
The processor memory is arranged as Figure 16.16(a). 

The I/O is connected to a processor database, but unlike 
PLCs described earlier, the designer can specify different 
scan rates for different cards. 
The designer also has considerable power over how the 

PLC program is organised. This is heavily modularised as 
we shall see later, and the user can also specify different 
scan rates for different modules of the program. 
Figure 16.16(b) indicates the database for one input card. 

There are two levels of the definition, the top level relating 
to details of the board itself such as address and scan rate, 
then lower levels relating to details of each channel on the 
board such as its name and whether the signal is to be 
inverted. The database holds details for all the I/O which 
can then be referenced by the program either by its database 
identification (e.g. DI3.1) or by its unique name (e.g. 
HydPump2StartPB). 
The Mitsubishi F2 range is typical of small PLCs with 

input/output connection, power supply and processor all 
contained in one unit. The smallest unit, the F2-40 M has 24 
inputs and 16 outputs. (It is a characteristic of process control 
systems that the ratio input:outputs is generally 3:2.) 
The 24 inputs are designated X400±X427 in octal 

notation and the 16 outputs Y430±Y447. The apparently 
arbitrary numbers are directly related to the storage 

Figure 16.16 The ABB Master system: (a) organisation of the 
memory; (b) definition of a digital input in the database 
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locations used to hold the image of the inputs and output. 
Further addresses are used in larger PLCs in the series. 

16.3.3 Ladder logic 

Early PLCs, designed for the car industry, replaced 
relay control schemes. The symbols used in American relay 
drawings, -] [- for a normally open (NO) contact, -] / [-
for a normally closed (NC) contact, and -( )- for a plant 
output, were the basis of the language. The earlier Figure 
16.5 showed the keyboard for a programmer for this type 
of PLC; the relationship to relay symbolism is obvious. 

Suppose we have a hydraulic unit, and we wish to give a 
healthy lamp indication when 
The Pump is running (sensed by an auxiliary contact on the 

pump starter). 
There is oil in the tank (sensed by a level switch which 

makes for good level). 
There is oil pressure (sensed by a pressure switch which 

makes for adequate pressure). 

With conventional relays, we would wire up a circuit as 
Figure 16.17(a). 
To use a PLC, we connect the input signals to an input 

card, and the lamp to an output card as Figure 16.17(b). The 
I/O notation used is Allen Bradley. 
The program to provide the function is shown on Figure 

16.17(c). The line on the left can be considered to be a sup-
ply, and the line on the right a neutral. The output is repre-
sented by a coil -( )- and is energised when there is a 
route from the left-hand rail. Output 0:22/01 will come 
on when signals I:21/00, I:21/01 and I:21/02 
are all present. 
The program is entered from a terminal with keys repre-

senting the various relay symbols. The terminal can also be 
used to monitor the state of the inputs and outputs, with 
`energised' inputs and outputs being shown highlighted on 
the screen. 
In Figure 16.18(a), a hydraulic cylinder can be extended 

or retracted by operation of two pushbuttons. The notation 
this time is for a GEM-80. It is undesirable to allow both 
solenoids to be operated together; this will almost certainly 
result in blown fuses in the supply to the output card, so 
some protection is needed. The program to achieve this is 
shown on Figure 16.18(b). 
Normally closed contacts -]/[- have been used here. 

Output B2.9, the extend solenoid, will be energised when 
the extend pushbutton is pressed, providing the retract sole-
noid is not energised or the retract button pressed, and the 
extend limit switch has not been struck. 
There are two points to note on Figure 16.18. Contacts 

can be used from outputs as well as inputs, and contacts 
can be used as many times as needed in the program. 
Figure 16.18 also shows the origin of the name `Ladder 
Program'. A program in this form looks like a ladder, with 
each instruction statement forming a `rung' and the power 
rail and neutral the supports. The term `rung' is invariably 
applied to the contacts leading to one output. 
Let us return to the hydraulics healthy light of Figure 

16.17 and add a lamp test pushbutton (a useful feature 
that should be present on all panels. It not only allows 
lamps to be tested, but can also be used to check the PLC 
and the local rack are healthy). To do this we add the lamp 
test pushbutton to the PLC and modify the program to 
Figure 16.19. 
Here we have added a branch, and the output will 

energise if our three plant signals are all present OR the 

Figure 16.17 From a relay circuit to a PLC program: (a) basic non 
PLC circuit; (b) wiring of I/O to a PLC; (c) the corresponding PLC 
program 

Figure 16.18 Ladder diagram in GEM-80 notation: (a) input/output 
connections; (b) GEM-80 ladder diagram 
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Figure 16.19 Adding a lamp test pushbutton with a branch 

lamp test button is pressed. The way in which the branch is 
programmed need not concern us here as it varies between 
manufacturers. Some use start branch and end branch keys 
(the keypad shown earlier on Figure 16.5 uses this method, 
the corresponding keys can readily be identified). Others 
use a branch from/to approach. All are simple to use. 
A further use of a branch is shown on Figure 16.20. This 

is probably the commonest control circuit, a motor starter, 
shown using Siemens notation. The operation is simple, 
pressing the start pushbutton causes the output Q8.2 to 
energise, and the contact of the output in the branch keeps 
the output energised until the stop button is pressed. The 
program, like its relay equivalent, remembers which button 
was last pressed. 
There is, however, a very important point to note about 

the pushbutton wiring and the program. For safety, a nor-
mally closed stop button has been used giving an input 
signal on I12.5 when the stop button is NOT pressed. 
A loss of supply to the button, or a cable fault, or dirt under 
the contacts will cause the signal to be lost making the pro-
gram think the stop PB has been pressed causing the motor 
to stop. If a normally open stop PB has been used, the PLC 
program could easily be made to work, but a fault with the 
stop button or its circuit could leave the motor running with 
the only way of stopping it being to turn off the PLC or the 
motor supply. 
This topic is discussed further in Section 16.7.4, but note 

the effect on the program in Figure 16.20. The sense of the 
stop button input (I12.5) inside the program is the oppo-
site of what would be expected in a relay circuit. The input 
is really acting as `Permit to Run' rather than `Stop'. 

16.3.4 Logic symbols 

Logic gates are widely used in digital systems (including the 
boards used inside PLCs). The circuits on these boards are 
represented by logic symbols, and these symbols can also be 
used to represent the operations of a PLC program. Logic 
symbols are used by Siemens and ABB; initially we will use 
Siemens notation. 
The output from an AND gate, shown on Figure 

16.21(a), is TRUE if (and only if) all its inputs are TRUE. 
The operation of the gate of Figure 16.21(a) can be repre-
sented by the table of Figure 16.21(b). In Figure 16.21(c) 
we have the hydraulics healthy lamp of Figure 16.19 
programmed using logic symbols for a Siemens PLC. 
The output block, denoted by equals �( , is energised when 
its input is true, so the lamp Q8.2 is energised (lit) when all 
the inputs to the AND gate are true. 
Often a test has to be made to say a signal is NOT true. 

This is denoted by a small circle `o'. In the earlier Figure 

Figure 16.20 A simple motor starter in Siemens notation: (a) input/ 
output connections; (b) the ladder diagram. Note how the stop button 
appears in the program 

16.18 we illustrated the control of a hydraulic cylinder with 
a program which prevented the extend and retract solenoids 
from being energised simultaneously. This is shown 
programmed with logic symbols for a Siemens PLC in 
Figure 16.22. Note the NOT inputs on each AND gate. 
The output of an OR gate, Z in Figure 16.23(a), is TRUE if 

any of its inputs are TRUE. The inverse of a signal can be 
tested, as before, with a small circle `o'. The output Z of the 

Figure 16.21 PLC programming using logic symbols: (a) an AND 
gate; (b) truth table for a three input AND gate; (c) the healthy lamp of 
Figure 16.17 using a logic symbol in Siemens notation 
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Figure 16.22 The hydraulic cylinder of Figure 16.18 in logic notation 
and Siemens addressing. Note the use of inverted inputs (denoted by 
small circles) 

gate in Figure 16.23(b) is TRUE if A is TRUE or B is FALSE 
or C is TRUE. In Figure 16.23(c) we have used an OR gate to 
add a lamp test to our hydraulic healthy lamp. 
The circuit of Figure 16.23(c) is an AND/OR combina-

tion. The ABB Master has logic combination blocks as 
well as the basic gates. Figure 16.24(a) is the Master block 
corresponding to Figure 16.23(c) (with a Master program 
referring to the names in its database). Similarly, for an 
OR/AND combination the OR/AND block of Figure 
16.24(b) can be used in a Master program. 

16.3.5 Statement list 

A statement list is a set of instructions which superficially 
resemble assembly language instructions for a computer. 
Statement lists, available on the Siemens and Mitsubishi 
range, are the most flexible form of programming for the 
experienced user but are by no means as easy to follow as 
ladder diagrams or logic symbols. 

Figure 16.24 ABB Master composite gates: (a) AND/OR gate 
(equivalent to Figure 16.23(c)); (b) OR/AND gate 

Figure 16.25 shows a simple operation in both ladder and 
logic formats for a Siemens PLC. The equivalent statement 
list would be: 

Instruction Operation Address number Comment 
00 :A I 3.7 Forward 

Pushbutton 
01 :A I 3.2 Front Limit 

OK 
02 :AN Q 4.2 Reverse 

Solenoid 
03 : �( Q 4.11 Output to 

Forward 
Solenoid 

Figure 16.23 The OR Gate: (a) logic symbol; (b) OR gate with inverted input; (c) lamp test added to Figure 16.21(c) 



//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/19 

= 

I3.7
I3.7 I3.2 Q4.2 Q4.11 

|– –]  [– –––] [––––] / [––––( )– –| I3.2 

Q4.2 

& 

Figure 16.25 Equivalent ladder and logic statements in Siemens notation 

I2.7 Q4.4 
+– –]/[– –+––––( )––I 

I2.7

F3.6
 F3.6+ – –] [– –+ 

Q4.2Q4.2 
+– –]/[– –+ 

Figure 16.26 OR gate equivalence in Siemens notation 

Here :A denotes AND, :AN denotes AND-NOT and 
: �( sends the result to the output address Q4.11. 
An OR operation is shown on Figure 16.26. The equiva-

lent statement list is: 

Instruction Operation Address number	 Comment 
00 :ON I 2.7	 Local Pump 

Running 
01	 :O F 3.6 Remote Pump 

Running 
02	 :0N Q 4.2 Local Pump 

Starter 
03 : �( Q 4.4 Pump Healthy 

Lamp 

where ON denotes OR-NOT and O denotes OR. 
Where a set of statements can be anomalous, brackets can 

be used to define the operation precisely. This is similar to the 
use of brackets in conventional programming where 
the sequence 3 � 5/2 can be written as (3 � 5)/2 �( 4 or  
3 �( (5/2) �( 5.5. 
Although the latter is the default assumed by a program, 

the brackets do make the operation clear to the reader. 
Figure 16.27 shows a typical operation, as usual in both 

logic and ladder diagram format. The equivalent statement 
list is: 

Instruction Operation Address Comments 
00 :A(	 Open First Set of 

Brackets 
01 :O F 3.3 Forward from desk 1 
02 :O F 3.4 Forward from desk 2 
03 :) Result of first set 

of brackets 
04	 :A( AND Result with 

second set of 
brackets 

05 :A I 2.0 Motor 1 Selected 
06 :A I 2.1 Motor 2 Selected 
07 :) Now at point X 
08 :A I 4.1 Front Limit Switch 

Healthy 
09 :AN Q 5.5 Reverse Starter 
10	 : �( Q 5.6 Output to Forward 

Starter 

Computer programmers will recognise this as being simi-
lar to the operation of a stack with the brackets pushing 
data down, or lifting data up, the stack. 

Q4.11 

Q4.4 

= 

Figure 16.27 More complex statements in ladder and logic notations 

The Mitsubishi PLC also uses statement lists, although 
the manual recommends the designer to construct a ladder 
diagram first then translate it into a statement list. The PLC 
system shown in Figure 16.28 with Mitsubishi notation 
becomes the statement list: 

Instruction Operation Address Comments 
0 LD X401 LD starts rung or 

branch 
1 AND X402 Xnnn are inputs 
2 ANI X403 ANI is And-Not 
3 LD Y430 LD starts a new 

branch leg 
4 AN M100 Mnnn are internal 

storage 
5 ORB OR the two branch 

legs 
6 AND M101 
7 OUT Y430 End of Rung 
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Figure 16.28 A rung in a Mitsubishi ladder program 

16.3.6 Bit storage 

As well as inputs and outputs, the PLC will need to hold 
internal signals for data such as `Standby Pump Running', 
`System Healthy', `Lubrication Fault' and so on. It would 
be very wasteful to allocate real outputs to these signals, so 
all PLCs provide some form of internal bit storage. These 
are known variously as Auxiliary Relays, (Mitsubishi), 
Flags (Siemens), General Workspace (GEM-80) and Bit 
Storage (Allen Bradley). The notation used within the pro-
grams vary, of course, from manufacturer to manufacturer. 
Mitsubishi use Mnnn with nnn representing numbers 

within the predefined area M100 to M377 octal. Like most 
small PLCs the memory layout is fixed and cannot be 
defined by the user. In the other, larger, PLCs we discuss, 
the user can define how many storage bits are needed. 
The Siemens notation is F <Byte>.<Bit>& (e.g. F27.06). 
The GEM-80 has a variety of general work space. The 

commonest is called the G table, and appears in programs 
as G<Word>.<Bit>& (e.g. G52.14). The G table is 
cleared when the PLC goes from a stopped state to a run 
state. Storage in the R table (e.g. R12.03) retains its state 
with the processor halted or with power removed. 
Bit storage in the PLC-5 is denoted by B3/n where 

n denotes the signal (e.g. B3/192). The B denotes bit 
storage and the 3 is mandatory and arises out of the way 
the PLC-5 holds data in files. Bit storage is file 3; timers 
are file 4 (T4) and counters file 5 (C5) as we shall see later. 
The ABB Master programming language does not really 

require internal storage bits, the function being provided by 
elements and connections within its database and the pro-
gramming language. 
Some form of memory circuit is needed in practically 

every PLC program. Typical examples are catching a fleet-
ing alarm and the motor starter of the earlier Figure 16.20 
where the rung remembers which button (start or stop) has 
been last pressed. These are known, for obvious reasons, as 
storage circuits. 
The commonest form is shown in ladder and logic form 

in Figure 16.29(a). Here output C is energised when input A is 
energised, and stays energised until input B is de-energised. 
The operation is summarised on Figure 16.29(b). As can 

be seen input B overrides input A, the action required of a 
start/stop circuit. In some circuits, however, the start is 
required to override the stop. We all have a typical example 
in our motor cars; the windscreen wipers run when we 
switch them on, but continue to run to the park position 
when we turn them off. The PLC equivalent is Figure 
16.29(c), where A would be the run switch, B the park limit 
switch and C the wiper motor. B has again been shown 
energised to allow running. The operation is summarised 
on Figure 16.29(d). 
Storage is provided in digital systems by a device called a 

flip flop shown on Figure 16.30(a). This has two inputs, S 
(for Set) and R (for Reset). The device remembers which 
input was last energised. If both inputs occur together, the 

top (S) input wins. Such a circuit is called an SR flip flop. 
If the device is drawn with the R input at the top, as 
Figure 16.30(b), the reset input will override the set input if 
both are present together. 
The flip flop is used in logic symbol PLC programming. 

A motor starter using a Siemens PLC is shown in Figure 
16.31. Note that the RS version has been used to ensure 
the stop logic overrides the run logic, and the stop signal 
acts as a permit to run. 
The ABB Master uses an almost identical symbol for 

the flip flop, with the addition that there are five versions. 
The first of these is the simple SR type shown earlier in 
Figure 16.30. The other versions are based on the fact that 
flip flops are invariably preceded by AND/OR combination 
of which Figure 16.31 is typical. The additional flip flops 
are one unit blocks consisting of a flip flop with built in 
AND/OR gates of user defined size. Figure 16.32 for 
example, is an ABB SRAO with an AND gate on the set 
input and an OR gate on the reset inputs. Other units are 
SRAA (AND/AND), SROA and SROO. 
In Allen Bradley ladder diagrams, program clarity can 

be improved by the use of latch and unlatch outputs shown 
on Figure 16.33(a). These work on the same bit, setting the 
bit when the latch -(L)- is energised and resetting the bit 
when the -(U)- is energised. When both latch and unlatch 
are de-energised the bit holds its last state. 
The Mitsubishi F2 uses a similar idea, but calls them S 

and R outputs as Figure 16.33(b). This would be coded 
into a statement list: 

0 LD X400 
1 OR X401 
2 S Y432 Set Output 
3 LDI X402 
4 ORI X403 
5 R Y432 Reset Output 

With both the Allen Bradley latch/unlatch, and the 
Mitsibushi set/reset, the priority goes to which ever is last 
in the program because of the program scan. Both the 
examples of Figure 16.33 correctly give priority to the 
stop signals. 
Power failure or halting of the PLC can cause a problem 

with storage. When the PLC restarts should a memory 
bit hold the state it was in before the PLC halted, or should 
the memory be cleared? This is always a question of safety 
and convenience. A water pump in a pump house by a 
river 5 km from the main site should probably be allowed 
to restart itself if it was running before the power fail, an 
automatic stamping machine should almost certainly not 
restart. 
The PLC manufacturers therefore allow the designer to 

choose whether a storage bit holds its state after a power 
fail (called retentive memory) or is cleared when the PLC is 
first run (called non retentive memory). 
In the Allen Bradley PLC-5, this is determined by the 

circuit; the simple coil of Figure 16.29 is non retentive, the 
latch/unlatch of Figure 16.33(a) is retentive. 
Other PLCs use the bit address. On a Siemens 115, flag 

addresses F0.0-F127.7 can be made retentive. On the 
Mitsubishi PLC, auxiliary relays M100-277 are non 
retentive, and M300-M377 are retentive. In the GEM-80, 
the general bit storage G Table is non retentive, a similar R 
Table is retentive, so a circuit similar to Figure 16.29 
constructed with R3.4 as the coil and retaining contact 
would hold its state after a power failure. 
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Figure 16.29 Bit storage programs: (a) commonest storage program, stop B overrides start A; (b) operation of (a), (c) Program where start A 
overrides stop B; (d) operation of (c) 

Figure 16.30 The two types of flip flop storage: (a) the SR flip flop, Set overrides R; (b) the RS flip flop, reset overrides set 
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Figure 16.31 Flip flop storage is commonly preceded by logic gates. 
Here either stop button will reset the flip flop. Note the circles on the 
stop button inputs denoting inverted inputs. These are necessary 
because the stop buttons give a signal in the not pressed state 

Figure 16.32 An ABB master SRAO composite flip flop 

Figure 16.33 Other forms of storage: (a) the Allen Bradley latch/ 
unlatch; (b) the Mitsubishi set/reset 

The ABB Master uses a very structured PLC language, 
and forces a disciplined style on the programmer. The nat-
ure of sub elements such as memories and their behaviour 
when the PLC is first run is defined when the program 
elements are first declared. 
Retentive storage can be very hazardous as plants can 

unexpectedly leap into life after a power fail. The designer 
should take care that the design does not accidentally intro-
duce retentive features by an inadvertent selection of bit 
addresses. 

Figure 16.34 Different forms of timer: (a) the on-delay. This is the 
commonest timer and is often the only type available in many smaller 
PLCs; (b) the off-delay; (c) the fixed width pulse, often called a mono-
stable 

16.3.7 Timers 

Time is nearly always a part of a control system. A typical 
example is: `Lift Parking Brake, wait 0.5 seconds for brake to 
lift, drive to forward limit and stop drive, wait 1 second and 
apply parking brake'. A PLC system must therefore include 
timers as part of its programming language. There are many 
types of timer, some of which are shown on Figure 16.34 
By far the commonest is the on-delay of Figure 16.34(a). 

All the other timer blocks can be built with this block and 
a bit of thought. A 0 to 1 transition is delayed for a preset 
time T, but a 1 to 0 transition is not delayed at all. An input 
signal shorter then T is ignored. The GEM-80 has only this 
type of timer, calling it a delay. 
The off-delay of Figure 16.34(b) passes a 0 to 1 transition 

instantly but delays the 1 to 0 transition. A common use of 
the off-delay is to remove contact bounce or noise from an 
input signal. An off-delay can be obtained from an on-delay 
by using the inverse of the input signal and taking the 
inverse of the timer output signal (although the resulting 
program lacks some clarity). 

Figure 16.34(c) is an edge triggered pulse timer, this gives 
a fixed width pulse for every 0±1 transition at the timer 
input. The PLC-5 has a Onescan pulse timer which pro-
duces a pulse lasting one (and only one) program scan. 
Pulses are useful for resetting counters or gating some 
information from one location to another. 
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Figure 16.35 Allen Bradley timer notations: (a) EN, TT and DN for an on-delay (TON) timer; (b) EN, TT and DN for an off-delay (TOF) timer 

A timer of whatever type has some values that need to 
be set by the user. The first of these is the basic unit of 
time (i.e. what units the time is measured in). Common 
units are 10 ms, 100 ms, 1 s, 10 s, and 100 s. The base unit 
does not affect the accuracy of the timer; normally the 
accuracy is similar to the program scan. 
Next the timer duration (often called the preset) is  

defined. This is normally set in terms of the time base; a 
timer with a preset of 15 and a time base of 100 ms will 
last 1.5 s for example. In small PLCs this preset can only 
be set by the programmer, in the larger PLCs the duration 
can be changed from within the program itself. A delay off 
timer used to apply a parking brake, for example, could 
have different preset times dependent on whether the drive 
concerned is travelling at low speed or high speed. 
When a timer is used there are several signals that may be 

available. Figure 16.35 shows the signals given for a PLC-5 
delay on timer (called a TON) and a delay off timer (called a 
TOF). 

EN (for enable) is a mimic of the timer input.

TT (for timer timing) is energised whilst the time is running.

DN (for done) says the timer has finished.


In larger PLCs the elapsed time (often called the 
Accumulated Time) may be accessed by the program for 
use elsewhere (a program may be required to record how 
long a certain operation takes). 
PLC manufacturers differ on how a timer is pro-

grammed. Some, such as the GEM-80, treat the timer as a 
delay block similar to the earlier Figure 16.34(a) with the 
preset being stored in a VALUE block. 
Siemens use a similar idea, but have different types of 

timer. The PLC-5, however, uses the timer as a terminator 
for a rung, with the timer signals being available as contacts 
for use elsewhere. 
Figure 16.36 shows a typical application programmed for 

a PLC-5 and a GEM-80 in ladder logic and a Siemens 115-U 
using logic symbols. The program controls a motor starter 
which is started and stopped via push buttons. The motor 
starter has an auxiliary contact which makes when the 
starter is energised, effectively saying the motor is running. 
If the drive trips because of an overload, or because an 
emergency stop is pressed, or there is a supply fault, the 
auxiliary contact signal will be lost. The contact cannot, 
however, be checked until 0.5 s after the starter has 
been energised to allow time for the contact to pull in. 
The program in each case checks the auxiliary contact 

and signals a drive fault if there is a problem. Note the dif-
ference in the way the timer is used and the fault signal is 
stored. 
The accumulated time in the timers discussed so far goes 

back to zero each time the input goes to a zero. This is 
known as a non retentive timer. Most PLC timers are of 
this form. Occasionally it is useful to have a timer which 
holds its current value even though the input signal has 
gone. When the input occurs again the timer continues 
from where it stopped. This, not surprisingly, is known as 
a retentive timer. A separate signal must be used to reset 
the timer to zero. If a retentive timer is not available on a 
particular PLC, the same function can be provided with 
a counter, a topic discussed in the next section. 
A typical timer can count up to 32 767 base time units 

(corresponding to 15 binary bits). Some older PLCs work-
ing in BCD can only count to 999. With a one second time 
base the maximum time will be just over 546 minutes or 
about 9 hours. Where longer times are needed, (or times 
with a resolution better than one second) timers and coun-
ters can be used together as described in the next section. 

16.3.8 Counters 

Counting is a fundamental part of many PLC programs. 
The PLC may be required to count the number of items in 
a batch, or record the number of times some event occurs. 
With large motors, for example, the number of starts have 
to be logged. Not surprisingly all PLCs include some form 
of counting element. 
A counter can be represented by Figure 16.37(a), although 

not all PLCs will have all the facilities we will describe. There 
will be two numbers associated with the counter. The first is 
the count itself (often called the accumulated value) which will 
be incremented when a 0->1 transition is applied to the 
count up input, or decremented when a 0->1 transition is 
applied to the count down input. The accumulated value 
(i.e. the count) can be reset to zero by applying a 1 to the reset 
input. Like the elapsed time in a timer, the value of the count 
can be read and used by other parts of the program. 
The second number is the preset which can be considered 

as the target for the counter. If the count value reaches the 
preset value, a count complete or count done signal is given. 
The preset can be changed by the program, a batching 
sequence, for example, may require the operator to change 
the number of items in a batch by a keypad or VDU entry. 
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Figure 16.36 The same timer based application programmed on 
three different machines: (a) Allen Bradley PLC-5 TON Timer; 
(b) GEM-80 delay block; (c) Siemens S5 in logic notation 

Similarly a signal zero count is sometimes available. The 
operation can be summarised as Figure 16.37(b). 
PLC manufacturers handle counters, like timers in 

slightly different ways. The PLC-5 and the Mitsubishi use 
count up (CTU) count down (CTD) and reset (RES) 
as rung terminators with the count done signal 
(e.g. C5:4.DN) available for use as a contact. 
The Siemens S5, ABB Master and the GEM-80 treat 

a counter as an intermediate block in a logic diagram 
or rung from which the required output signals can be used. 
Figure 16.38 shows a simple count application performed 

by a PLC-5, a Siemens S5 and a GEM-80. Items passing 
along a conveyor are detected by a photocell and counted. 
When a batch is complete, the conveyor is stopped and a 

batch complete light is lit for the operator to remove the 
batch. When he does this, a restart button sets the sequence 
running again. 
As we saw with timers, most PLCs allow a counter 

to count up to 32 767. Where larger counts are needed, 
counters can be cascaded with the complete (or done) signal 
from the first counter being used to step the second counter 
and reset the first. Figure 16.39 is a variation on the same 
idea used to give a very long timer. It is shown for a PLC-5, 
but the same idea could be used on any PLC. 
The first rung generates a free running one scan pulse with 

inter pulse period set by the timer period. (When the timer 
has not timed out, the DN signal is not present and the timer 
is running. When it reaches the preset, the DN signal occurs, 
resetting and restarting the timer.) The resulting one second 
pulse is counted by successive counters to give accumulated 
seconds/minutes/hours/days. As each counter reaches its 
preset it steps the next counter and resets itself. 
Long duration timers built from counters are normally 

retentive (i.e. they hold their value when the controlling 
event is not present). They can be made non retentive 
by resetting the counters when the controlling event is not 
present, but this is rarely required. 

16.3.9 Combinational logic 

Any control system based on digital signals can be repre-
sented by Figure 16.40(a), where a system has a set of out-
puts Z, Y, X, W, etc. whose state is determined by inputs A, 
B, C, D, etc. The control scheme can operate in a combina-
tion of two basic manners. 
The simplest of these is combinational logic where the 

scheme can be broken down into smaller blocks as Figure 
16.40(b) with one output per block, with each output state 
being determined solely by the corresponding input states. 
The loading valve for a hydraulic pump, for example, is to 
be energised when 

The pump is running 
AND(Raise is selected AND top limit SW 
is not struck) 
OR (Lower is selected AND bottom limit 
SW is not struck) 

The operation of this loading valve can be implemented 
with the simple ladder or logic program of Figure 16.41, 
but it is worth developing a standard way of producing a 
combinational logic program. 
The first stage is to break the control system down into a 

series of small blocks, each with one output and several 
inputs. For each output we now draw up a so called truth 
table in which we record all the possible input states and the 
required output state. In Figure 16.42(a) we have an output 
Z controlled by four inputs A, B, C, D. There are sixteen 
possible input states, and Z is energised for four of these. 
This can be translated directly into the ladder diagram of 
Figure 16.42(b) or the logic circuit of Figure 16.42(c), with 
each rung branch and or gate corresponding to one row in 
the truth table. The use of a truth table method for the 
design of combinational logic circuits leads directly to an 
AND/OR arrangement called, technically, a Sum of 
Products (S of P) circuit. 

16.3.10 Event driven logic and SFCs 

The states of outputs in combinational logic are determined 
solely by the input signals. In event driven logic (also known 
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Figure 16.37 The up/down counter: (a) counter diagram; (b) counter operation 

as a sequencer) the state of an output depends not only 
on the state of the inputs, but also on what was occurring 
previously. It is not therefore possible to draw a truth table 
from which the required logic can be deduced. 
Consider, for example, the simple motor starter circuit of 

Figure 16.43(a). With neither button pressed, the motor 
could be running or stopped depending on what occurred 
last. The operation can be described by Figure 16.43(b) 
which is known as a state transistion diagram, (often 
shortened to state diagram). 
The square boxes are the states the system can be in; the 

motor can be running or stopped, and the arrows are the 
transitions that cause the system to change states. If the motor 
is running, pressing the stop button will cause the motor to 
stop. A bar above a signal (e.g. above stop PB OK) means 
signal not present; note the wiring of the stop PB and the signal 
sense. It is a useful convention to label states with numbers and 
transitions with letters. 
State transition diagrams can be constructed from 

storage elements, with one less storage element than there 
are states, and the one default state being inferred by the 
absence of others. It therefore requires just one storage ele-
ment (latch, SR flip flop or whatever) to implement the 
motor starter of Figure 16.43. 
Figure 16.44 is a more complex example (based on a real 

silo). A preset weight of material is fed into a weigh hopper 
ready for the next discharge, which is initiated by a 

Discharge pushbutton. A hood then lowers (to reduce dust 
emissions) and the material discharges. After the discharge, 
the hood retracts and the weighhopper re-fills. An abort 
pushbutton stops a discharge, and a feed permit switch 
stops the feed. 
There are two fault conditions; failure to get the batch 

weight in a given time (probably caused by material 
jamming in the feeder) and failure to get zero weight from 
the discharge (again in a given time and again probably 
caused by a material jam). Both of these trip the system 
from automatic to manual operation to allow the cause of 
the fault to be determined. 
We can now draw the state diagram of Figure 16.44(b). 

The default state is the state that the system will enter from 
manual, and care needs to be taken in its selection. Here 
feed is the sensible choice; if the hopper if already full the 
system will immediately pass to state 1 (ready), if not, the 
hopper will be filled. The choice of any other state as default 
could lead to a wasted cycle through all the states with no 
material in the weigh hopper. 
We can now construct a table linking the outputs to the 

states. This is straightforward and is given on Figure 16.44(c). 
The next stage is to translate this state diagram into a 

PLC program. The programming method relies very much 
on the idea of the program scan, described earlier in Section 
16.2.4. By breaking down the program for our state 
diagram into four areas as Figure 16.45 we can control the 
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Figure 16.38 A simple batch counter programmed on three different 
machines: (a) Allen Bradley PLC-5; (b) GEM-80; (c) Siemens S5 in 
logic notation 

order in which each stage operates. The actual layout is not 
critical, but it is essential for transitions and states to be 
kept separate and not mixed. 
Automatic/manual selection comes first, this is achieved 

with the simple rung of Figure 16.46. Automatic mode is 
only allowed if there are no faults and the hood is raised. 

Figure 16.39 Cascading counters to give a long delay. Allen Bradley 
PLC-5 notation has been used 

Next come the transitions, some of which are shown 
on Figure 16.47. These are straightforward and need little 
comment. Note that the first contact in each rung is a state, 
so inputs are only examined at the correct point in a sequence. 
Some of the states themselves are given in Figure 16.48. 

With the exception of state 0, simple latches have been used 
throughout for the states and the auto/man selection so that 
after a power failure the system will resume in manual 
mode. Note that these are set and reset by the transitions. 
Finally we have the outputs themselves on Figure 16.49. 

An output is energised during the corresponding state(s) in 
automatic or from the manual maintenance push button in 
manual. 
The state diagram technique is very powerful, but it can 

lead to confusion if the basic philosophy is not understood. 
The often quoted argument is it takes more rungs or logic 
elements than a direct approach programmed around the 
outputs. 
This is true, but programming around the outputs can 

lead to very twisted and difficult to understand programs. 
Figure 16.50 is one rung roughly corresponding to state 2 of 
our state diagram. It mixes manual and automatic opera-
tion and its action is by no means clear (known colloquially 
as Spaghetti programming). Problems can arise where tran-
sitions go against the program scan as transition E on the 
earlier Figure 16.44(b). If care is not taken, a sequence based 
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Figure 16.40 Combinational Logic: (a) top level view; (b) broken down into smaller blocks, each with one output, for programming 

Figure 16.41 Combinational logic in ladder and logic notations. Both 
perform the same function 

purely on outputs can easily end up doing two things at 
once, or nothing at all because of the way the program 
scan operates. Modifications are also tricky with a direct 
approach, but simple with a state diagram. 
State diagrams are being formalised by the International 

Electrotechnical Commission and the British Standards 
Institute, and already exist with the French Standard 
Grafset. These are basically identical to the approach out-
lined above, but introduce the idea of parallel routes which 
can be operated at the same time. Figure 16.51(a) is  called  a  
divergence, state 0 can lead to state 1 for condition s OR to 
state 2 for condition t with transitions s and t mutually exclu-
sive. This is the form of the state diagrams described so far. 
Figure 16.51(b) is a  simultaneous divergence, where  state 0will  

lead to state 1 AND state 2 simultaneously for transition u. 
States 1 and 2 can now run further sequences in parallel. 
Figure 16.51(c) again corresponds to the state diagrams 

described earlier, and is known as a convergence. The 

sequence can go from state 5 to state 7 if transition v is 
true OR from state 6 to state 7 if transition w is true. 
Figure 16.51(d) is called a simultaneous convergence (note 

again the double horizontal line) state 7 will be entered if 
the left-hand branch is in state 5 AND the right-hand 
branch is in state 6 AND transition x is true. 
The state diagram is so powerful that most medium size 

PLCs include it in their programming language in one form 
or another. Telemecanique give it the name Grafcet (with a 
`c'), others use the name Sequential Function Chart (SFC) 
(Allen Bradley) or Function Block (Siemens). We will 
return to these in the next chapter. 
Even the simple Mitsubishi F2 supports state diagrams 

with its STL (Stepladder) instruction. These have the prefix 
S and can range from S600 to S647. They have the charac-
teristic that when one or more are set, any others energised 
are automatically reset. A RET instruction ends the 
sequence. The state diagram of Figure 16.52(a) thus 
becomes the ladder diagram of Figure 16.52(b). 
Where there are no branches and the sequence is a simple 

ring (operating rather like a uniselector) a sequence can be 
driven by a counter which selects the required step. The 
counter is stepped when the transitions for the current step 
are met. The GEM-80 has a SEQR (sequence) instruction 
which acts as a sixteen step uniselector. 

16.3.11 IEC 1131 

We have seen that PLCs can be programmed in several 
different ways. In recent years the International 
Electrotechnical Commission (IEC) have been working 
towards defining standard architectures and programming 
methods for PLCs. The result is IEC 1131, a standardised 
approach which will help at the specification stage and 
assist the final user who will not have to undergo a mind-
shift when moving between different machines. 
The earliest, and probably still the commonest, program-

ming method described is the Ladder Diagram (or LD in 
IEC 1131). 
Function Block Diagrams (FBDs) use logic gates (AND/ 

OR etc.) for digital signals and numeric function blocks 
(arithmetic, filters, controllers, etc.) for numeric signals. 
FBDs are similar to PLC programs for the ABB Master 
and Siemens SIMATIC families. There is a slight tendency 
for digital programming to be done in LD, and analog 
programming in FBD. 
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Figure 16.42 Building combinational logic from a truth table: (a) truth table; (b) Direct conversion to a ladder program. Each row in the truth table 
which makes Z �( 1 is represented by one level on the branch; (c) Direct conversion to a logic diagram. Each row in the truth table which makes Z �( 1 
is represented by an AND gate. The AND gate outputs are then OR'd together 

Figure 16.43 A simple state transition diagram; (a) A motor starter; (b) State transition diagram. Note that with no buttons pressed the system can 
be in either state 
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Figure 16.44 A more complex state transition diagram for a real plant: (a) physical layout; (b) state transition diagram; (c) output table 

Many control systems are built around state transition 
diagrams, and IEC 1131-3 calls these Sequential Function 
Charts (SFCs). The standard is based on the French 
Grafcet standard shown earlier on Figure 16.51. 
Finally are text based languages. Structured Text (ST) 

is a structured high level language with similarities 
to Pascal and C. Instruction List (IL) contains simple 
mnemonics such as LD, AND, ADD etc. IL is very close 
to the programming method used on small PLCs where the 
user draws a program up in ladder form on paper, then 
enters it as a series of simple instructions. 
Figure 16.53 illustrates all of these programming methods. 
A given project does not have to stick with one method, 

they can be intermixed. A top level, for example, could be 
an SFC, with the states and transitions written in ladder 
rungs or function blocks as appropriate. 

It will be interesting to see the effect of IEC 1131-3. Most 
attempts at standardisation fail for reasons of national and 
commercial pride. MAP, and latterly fieldbus, have all had 
problems in gaining wide acceptance. A standard will be 
useful at the design stage, and could be accepted by the 
end user if programming terminals presented a common 
face regardless of the connected machine. 

16.4 Numerics 

16.4.1 Numerical applications 

So far we have been primarily discussing single bit opera-
tions. Numbers are also often part of a control scheme; a 
PLC might need to calculate a production rate in units per 
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Figure 16.45 The program scan and the layout of a state transition 
diagram program 

Figure 16.46 Auto/manual selection 

Figure 16.47 The first three transitions 

hour averaged over a day, or give the amount of liquid in a 
storage tank. Such operations require the ability to handle 
numeric data. 

16.4.2 Numeric representations 

Most PLCs work with a 16 bit word, allowing a positive 
number in the range 0 to �65 535 to be represented, or a 
signed (positive or negative) number in the range �32 768 
to �32 767. In the latter case, known as two's complement, 
the most significant bit represents the sign, being 1 for nega-
tive numbers and 0 for positive numbers. 
Numbers such as these are known as integers, and can 

only represent whole numbers in the above range. Where lar-
ger whole numbers are required, two sixteen words can be 
used allowing a range �2 147  483 648  to  �2 147  483 647.  
This type of integer is available in the ABB Master (where it 
is known as a long integer) and the 135-U and 155-U in 
the Siemens family (where the term double word integer is 
used). 
Where decimal fractions are needed (to deal with a tem-

perature of 45.6 �C for example) a number form similar to 
that found on a calculator may be used. These are known as 
real or floating point numbers, and generally consist of two 
sixteen bit words which contain the mantissa (the numerical 
portion) and the exponent. In base ten, for example, the 
number 74 057 would have a mantissa of 7.4057 and an 
exponent of 4 representing 104. PLCs, of course, work in 
binary and represent mantissa and exponent in two's com-
plement form. 
Real numbers are very useful but their limitations should 

be clearly understood. There are two common problems. 
The first occurs when large numbers and small numbers 
are used together. Suppose we had a system operating to 
base ten with four significant figures, and we wish to add 
857 800 (stored as 8.578E5) and 96 (stored as 9.600E1). 
Because the smaller number is outside the range (four sig-
nificant figures) of the larger, it will be ignored giving the 
result 857 800 � 96 �( 857 800. 
The second problem occurs when tests for equality are 

made on real numbers. The conversion of decimal numbers 
to binary numbers can only be made to the resolution of the 
floating point format. If real numbers must be used for 
comparison, a simple equates ( �( ) is very risky. The compo-
sites >=, (greater than or equals), and <=, (less than or 
equals), are safer, but it is generally better practise to use 
integers for tests if at all possible. 
The final representation, BCD for Binary Coded Decimal, 

is used for connection to outside world devices such as 
digital displays or thumbwheel switches. Such devices are 
arranged in a decimal format, with 4 binary bits per decade, 
for example 

1 0 0 1  0 1 0 1  

can be interpreted in BCD as 95. 
This representation is wasteful, as six `numbers' are 

not used per four bits (10 to 15 inclusive). It is, however, a 
convenient form to use with external wiring. Most PLCs 
therefore have instructions which convert BCD to the inter-
nal binary format of the PLC, and binary back to BCD. 
The types of numbers available in each PLC range vary 

considerably according to the model (and obviously the 
price). The Mitsubishi F2, for example, purely allows move-
ment, comparison and output of numerical data from coun-
ters or timers, making it essentially a bit operation machine. 
In the Siemens range, the popular 115-U uses only 16 bit 

integer numbers but the next model in the range, the 135-U, 
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Figure 16.49 Two of the plant outputs 

can handle 16 bit and 32 bit integers and floating point 
numbers. A similar spread of capabilities will be found 
amongst the Allen Bradley, GEM-80 and ABB families. 

16.4.3 Data movement 

Numbers are often moved from one location to another; a 
timer preset may be required to be changed according to 
plant conditions, a counter value may need to be sent to an 
output card for indication on a digital display or the result 
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of some calculations may be used in another part of a 
program. 
The Allen Bradley PLC-5 uses one rung per move opera-

tion, and is possibly the simplest to explain first. Its simpli-
city of one rung per operation is continued in all the 
arithmetic functions we shall consider, but it can lead to 
more rungs being used for a given operation than in other 
machines. 
Figure 16.54(a) shows the form of the rung. It starts with 

some binary conditions; if these are all made the output 
MOV (for MOVE) is obeyed, transferring data from the 
source to the destination. The source and destination can be 
any location where numerical data can occur, for example 

Integer number (e.g. N7:26)

Floating point number (e.g. F8:33)

Counter or timer preset (e.g. C5:17.PRE or

T4:52.PRE)

Counter or timer accumulated value (e.g. C5:22.ACC or

T4:6.ACC)

I/O word data (e.g. I:23 which is all 16 bits from inputs

on card 3 in rack 2)


If data is transferred between integer and floating point 
forms, the conversion is performed automatically however 
care must be taken transferring floating point numbers to 
integers as an error can occur if the floating point number is 
outside the integer range. Finally, as a source only, a con-
stant (such as 3, 17 or 4057) can be used. 
The example of Figure 16.54(a) thus moves the number 

held in N7:34 to the preset of timer T4:6 when the rung 
conditions are met. 
Siemens and GEC use a slightly different approach which 

leads to more compact programs. Both treat a data movement 
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Figure 16.50 An example of spaghetti programming approximating to state 2 

Figure 16.51 Grafset symbols: (a) divergence; (b) simultaneous 
divergence; (c) convergence (d) simultaneous convergence 

as two separate instructions via a separate accumulator 
(a single word storage location). Siemens use the instruc-
tions load to move data from a source to the accumulator, 
and transfer to move data from the accumulator to the 
destination as Figure 16.54(b). The data can come from 
(or go to) any data storage area, some of which are 

IW a 16 bit input word 
QW a 16 bit output word 
T a timer word 

a counter word 
DW a 16 bit data storage word 

Figure 16.54(b) would thus be programmed as 

:L T113 (timer value to accumulator) 
:T DW45 (accumulator to data word 45) 

The use of the accumulator is not obvious in the 
GEM-80. The-<AND>- instruction puts the binary num-
ber from the specified location (again internal storage or 

Figure 16.52 State diagrams on the Mitsubishi F2: (a) state diagram; 
(b) part of the ladder diagram corresponding to (a) 

C 
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RUN_CMD 
AUTO_CMD AUTO_CMD 

MAN_CMD MAN_MODE AUTO_MODE 

Ladder Rung (LD) Language 

AUTO_CMD 

& 

> = 1 RUN_CMD 

AUTO_MODE 

MAN_CMD


MAN_MODE
 & 

AUTO_MODE 

Function Block (FBD) language 

RUN_CMD : = AUTO_CMD & AUTO_MODE

OR (MAN_CMD & MAN_MODE & NOT AUTO_MODE)


Structured Text (ST) Language 

Figure 16.53 The five programming methods defined in IEC 1131-3 

Figure 16.54 Data Movement: (a) Allen Bradley PLC-5; (b) Siemens 
S5; (c) GEM-80 

I/O) into the rung, and the -<OUT>- instruction puts the 
value from the rung to the specified address. In Figure 
16.54(c) the (binary) value from 16 bit input word A12 is 
placed into 16 bit storage word G24. 

LD AUTO_CMD 
AND AUTO_MODE 
OR (MAN_CMD 
AND MAN_MODE 
ANDN AUTO_MODE 
) 
STRUN_CMD 

Instruction List (IL) Language 

Ready Lmp-1 

Start_PB 

Flll SDV–1 

Full & P1 Full & P2 

– DI sch 2 SDV–3DI sch 1 SDV 2

1 done 2 done 

Close 1 SDV 4 Close 2 SDV– 5– 

1 Closed 2 Closed 

Walt Lmp–2 

Sequential Function Chart (SFC) Language 

BCD/binary conversion is available with -<BCDIN>-
and -<BCDOUT>- instructions, the direction of the con-
version being obvious. 
In the ABB Master, the points between which data is to 

be transferred are simply linked on the logic diagram. 

16.4.4 Data comparison 

Numerical values often need to be compared in PLC pro-
grams; typical examples are a batch counter saying the 
required number of items have been delivered, or alarm 
circuits indicating, say, a temperature has gone above some 
safety level. 
These comparisons are performed by elements which 

have the generalised form of Figure 16.55, with two numer-
ical inputs corresponding to the values to be compared, and 
a binary (on/off) output which is true if the specified condi-
tion is met. 
Many comparisons are possible; most PLCs provide 

A Greater Than B (A>B) 
A Greater Than or Equal to B (A>�B) 
A Equals B (A �(B) 
A Less Than or Equal to B (A<�B) 
A Less Than B (A<B) 

where A and B are numerical data. With real (floating 
point) numbers the equal test should be avoided for the rea-
sons given in the previous section. There are many other 
possible comparisons; a PLC-5, for example has a limit 
instruction which tests for A lying between B and C and 
the GEM and Siemens have a not equal test. 
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Figure 16.55 Basic idea of data comparison 

Figure 16.56 Use of data comparison for a high temperature alarm: 
(a) Allen Bradley PLC-5; (b) Siemens S5 in logic notation 

Figure 16.56 shows the setting and resetting of an alarm 
flag B3/21 (for a PLC-5 ladder diagram) and F21/02 
(for Siemens logic symbols). The alarm bit is set if tempera-
ture (read from an analog input card in format NN.N �C 
and held in N7:15 in the PLC-5 or DW42 in the Siemens 
115-U) goes above 50.0 �C. Once set, the alarm is stored 
until the temperature goes below 40.0 �C. 

16.4.5 Arithmetical operations 

Numerical data implies the ability to do arithmetical opera-
tions, and all PLCs we are considering (apart from the sim-
ple F2) provide the ability to do at least four function maths 
(add, subtract, multiply and divide). 
In Section 16.4.2 we discussed integer and floating point 

numbers. Care needs to be taken with integer operations. 
The range of a 16 bit two's complement number is �32 768 
to �32 767. If an arithmetical operation goes outside this 
range, the number will overspill, for example 

which is not quite the expected result. The PLCs have an 
overspill flag which can be examined and used to flag an 

alarm, or set the result to, say, zero with a move instruction. 
Similar precautions need to be taken with subtraction and 
multiplication (the latter being particularly vulnerable to 
giving an overspill; for example 200 �( 200 �( 40 000, well 
over-range.) 
Even greater care needs to be taken with division. A fault 

condition on external plant or a PLC input card or a pro-
gramming error can lead to a divide by zero error. This will 
stop many PLCs dead in their tracks with a `Program 
Fault'. It is therefore good practice to proceed any vulner-
able divide instruction with a limit check to ensure it will 
only be obeyed when a sensible result is obtained. 
Each PLC manufacturer handles arithmetic in a slightly 

different way with varying degrees of ease and readability. 
None are as simple as a high level language such as BASIC 
or Pascal, and the facilities are generally limited to four 
function maths plus square root in all bar the most expen-
sive machines. 
A PLC-5 uses maths blocks such as ADD, SUB, 

MULT, DIV, giving a simple, if somewhat lengthy, pro-
gram. Figure 16.57 shows how a simple calculation could 
be performed for a self correcting length cutting program. 
More powerful PLC-5s (such as the 5±40) have a block 
compute instruction (CPT) which allows a mathematical 
expression to be evaluated in a single instruction. 
The 115-U only evaluates arithmetic instruction in STL 

(statement list) format. It will be remembered from our 
discussion of the accumulator that the load, (L) and transfer 
(T) instructions use an internal accumulator. There are, in 
fact, two accumulators, and a load instruction moves 
the contents of accumulator 1 to accumulator 2 then 
moves the contents of the source to accumulator 1, 
shown in Figure 16.58(a). An arithmetic instruction (add, 
subtract, etc.) works on the contents of both accumulators. 
Figure 16.58(b), thus adds two numbers and transfers the 
result to storage. 
The Siemens equivalent of Figure 16.57 would be 

L DW30 (required length)

L DW31 (measured length)

SUB (leaving error in Acc 1)

L DW32 (gain)

MULT (leaving correction)

L DW40 (the old cut length)

ADD (add change to give new length)

T DW40 (put back to store)


Figure 16.57 Arithmetic in the PLC-5 
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Figure 16.58 Arithmetic in a Siemens S5 

The most understandable form of representation is pos-
sibly the GEM-80 ladder and the ABB Master formats 
shown in Figure 16.59(a) and (b) respectively. 
All maths operations, particularly those involving 

floating point numbers, are time consuming, and it is good 
programming practice to only obey instructions when they 
are needed, and not waste time repetitively obeying them 
on every PLC scan. 

16.4.6 Analog signals 

So far we have considered signals that are essentially digital 
(on/off) in nature plus simple numerical data from timers and 
counters. Often, though, a PLC will be required to measure, 
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or control, plant signals which can assume any value in some 
predetermined range. Typical signals of this type are tem-
peratures, flows, pressure, speeds etc. These are known as 
analog signals. In a similar way a PLC may have to produce 
analog output signal to drive meters and proportional valves 
or provide a speed reference for a motor drive controller. 
To meet these requirements a PLC needs analog input and 

output cards. These have somewhat different characteristics 
to the simple digital cards we have discussed so far. This sec-
tion considers analog signals and the way they are handled. 
An analog input card converts a continuously varying 

analog signal to a digital form that can be used inside a 
PLC program. The analog signal is generally represented 
initially, at least, as an integer number. 
This analog to digital conversion (usually known by the 

initials ADC) is inherently accompanied by a loss of resolu-
tion which depends on the number of bits used. An 8 bit byte 
for example, can represent an integer in the range 0±255. 
If this was used to represent an analog signal measuring 
a flow with a span (range) from 0±1800 l/min, one bit 
will represent approximately 7 l/min (given by 1800/255). 
Any control strategy in the program based on finer resolu-
tion is meaningless (and particular care should be taken 
with comparisons, as some values can never be obtained; a 
flow of 138 l/min, for example, would never be given by our 
8 bit system, it would jump from 134 l/min to 141 l/min. 
Comparisons should therefore always be based on (greater 
than or equal to) or (less than or equal to)). 
A commoner resolution is 12 bits. This gives a representation 

as an integer from 0±4095. With our flow of 0±1800 l/min, one 
bit would represent just under 0.5 l/min (1800/4095 �( 0.44). 
This `coarseness' is not the problem it might at first 

appear. Although an analog transducer can give any value 

Figure 16.59 The same mathematical function in a GEM-80 and ABB Master: (a) GEM-80 program. LINCON is an arithmetic function used to avoid 
truncation errors with integer arithmetic; (b) ABB master program using function blocks. Variables are accessed by database names 
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Figure 16.60 The effect of the sampling rate 

in its span, it will have inherent errors. Many first line trans-
ducers are only 2% accurate. If our flow transducer had 2% 
accuracy, its measurement could be in error by 36 l/min. 
Alongside this error, the 7 l/min resolution from an eight 
bit card is probably quite reasonable. 
It is therefore useful to think of the resolution in terms of 

an error which is to be added to the error from the trans-
ducer itself 

No of bits Range Error 
8 0-255 0.5% 
10 0-1023 0.1% 
12 0-4095 0.025% 

Few industrial transducers have an accuracy better than 
0.1%, and a 12 bit conversion will add little error in most 
applications. 
The conversion from an analog signal to a digital repres-

entation is not instantaneous. Typically signals are read ten 
times per second. An analog input card thus takes regular 
`snapshots' of each analog signal. In Figure 16.60(a) this  
causes no problems, in Figure 16.60(b) information is starting 
to be lost and in Figure 16.60(c) a totally false view of the 
signal is being given. This latter effect is known as `aliasing'. 
It is therefore very important to have a sufficiently fast 

conversion time. Every analog signal will have a maximum 
frequency at which it can change, and can be represented by 
a gain/frequency plot as Figure 16.61 from which the band-
width and the critical frequency fc can be observed. To get a 
true series of `snapshots' we must sample the signal at least 
twice the rate of fc. If a certain analog signal has a maximum 
frequency of 2 Hz, we must at least sample it at 4 Hz, or once 
every 250 ms. This, somewhat simplified, is known as 
Shannon's sampling theorem. In  real  systems,  fc is rarely 
known precisely and a scan rate of 4 fc to 10 fc is normally 
chosen to give a reasonable safety margin. For our 2 Hz 
signal, an 8 Hz sampling rate or 12.5 ms conversion time, 
would be needed. It is good practice to pass the signal through 
a low pass filter before the ADC to ensure frequencies above fc 
are removed. This is known as an anti-aliasing filter. 

Gain 
(dB) 

0 

Frequency range of interest 

0.01 0.1 1 fc 10 Freq 
(Hz) 

Figure 16.61 Gain/frequency response for an industrial process 

Surprisingly this rarely gives problems. Practical industrial 
systems, dealing with real plant signals concerned with mate-
rials with significant mass, rarely have bandwidths greater 
than 0.5 Hz, and any frequency higher than this can be con-
sidered to be extraneous noise and filtered out. Temperature 
loops, for example, can often be sampled as slowly as once 
every few minutes without introducing any errors. 
A typical analog input card can read eight 12 bit signals, 

each ranging from 0±4095 in their `raw' form. Generally 
these will need to be accessed via the PLC program and 
converted to engineering units such as �C, or psi, or l/min. 
A common method of handling these signals, is shown in 

Figure 16.62. A block of storage locations in the PLC store 
is directly associated with the analog input card. The 
card `free runs', writing digitised values into the store from 
where they can be read by the rest of the program. 
In Siemens PLCs with fixed slot addressing, for example, the 
store addresses are determined directly by the analog card 
position in the rack; a card in slot 2 of the first rack will 
write its values to a block of stores starting at location 192. 
Conversion from a raw 12 bit signal to engineering units 

can have subtle traps for the unwary. In theory the conver-
sion is simple. If N is the raw signal, HR the high range 
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Figure 16.62 Linking channels on an analog input card to a PLC's 
memory 

signal (corresponding to 4095) and LR the low range (corre-
sponding to zero) then the measured value, MV is simply 

N � �HR �( LR�(
MV � �( LR �16:1�(

4095 
If the calculation is done with real (floating point ) numbers 
there should be no problem, and Equation 16.1 can be used 
directly. 
If, however, integer numbers have to be used, great care 

must be taken. If the multiplication N �( (HR ± LR) is  
performed first, arithmetic overspill is likely unless 32 bit 
results can be accommodated. If the division N/4095 is 
performed first, the equation will not work as N is always 
less than 4095 giving an integer result of zero (and an MV of 
LR). Wherever possible real numbers should be used if 
Equation 16.1 has to be performed. 
To avoid this problem, the different manufacturers have 

devised methods to read analog input signals. In the ABB 
Master for example, the database for each signal defines 
HR, LR, the sample rate and a name by which the signal 
will be referred to in the program. There are, obviously, 
detail differences, so by way of example we will look at the 
way analog signals are read by an Allen Bradley PLC-5. 
The Allen Bradley PLC-5 reads analog signals with an 

analog input card (1771-IFE) which can in its simplest 
form, read 8 analog inputs. The PLC communicates with 
the card via instructions called block transfers which trans-
fer data to (or from) a block of store locations. Data trans-
fers from the PLC to a card are called block transfer writes 
(BTW) and, not surprisingly, transfers from a card to the 
store are block transfer reads (BTR). For each type of 
instruction, somewhat simplified, the programmer states: 

(a) The direction of transfer (BTW or BTR). 
(b) The card address (rack, slot and slot half, left or right). 
(c) The store location start address where the data is to be 

received. 
(d) The number of 16 bit words to be transferred. 

The analog input card uses both BTW and BTR instructions, 
the BTW being used once, after power up, to configure 

Figure 16.63 The PLC-5 block transfer write (BTW) and block 
transfer read (BTR) instructions 

the module and the BTRs subsequently to read the data as 
summarised in Figure 16.63. 
The post power up BTW sets how the module is to 

behave; whether it gives data in binary or BCD and the 
minimum and maximum values for the input range (HR 
and LR in Equation 16.1) on each channel. The card uses 
these to return readings in engineering units (in 12 bit bin-
ary integer or two's complement format or 12 bit BCD). 
Once set up, values can be read at the required time inter-

vals with a BTR. This gives signal values in the specified 
store locations along with over-range and similar alarms. 
The values can then be used elsewhere in the program. 
PLCs are often required to provide analog output signals. 

Like analog inputs, these signals have standard voltage ranges 
of 1±5 V or 0±10 V or the current range of 4±20 mA. 
A typical analog output card, for example, is the Allen 

Bradley 1771-OFE which has four output channels, each 
turning a 12 bit (0±4095) digital signal into an analog out-
put. Isolation amplifiers are used on the outputs to reduce 
the effects of noise and allow the signals to connect into 
external devices fed from different electrical supplies. 
The digital signals come from storage locations inside the 
PLC as shown on Figure 16.64. This conversion is known 
as Digital to Analog conversion, or DAC. 
For best resolution the PLC should use the full 0±4095 

range, but this is frequently impossible. If the PLC, for 
example, is setting the speed range of a motor from 0±1350 
rpm, it will need to convert 0±1350 into the range 4±20 mA. 
Equation 16.1 can be re-arranged as 

4095�N �( LR�(
X � �16:2�(

HR �( LR 

where X is the value passed to the DAC (in the range 
0±4095). N is the output number from the PLC in engineer-
ing units, and HR/LR are the high and low range values. As 
before, great care must be taken with Equation 16.2 to 
avoid overspill or loss of resolution. 

H

The PLC-5 communicates with the 1771-OFE with the 
BTW instruction described previously. The programmer 
sets up a block of twelve words, the first four of which 
contain the values, and the balance the set up data such as 
R and LR. The block of data is then written to the card 

with a BTW. Figure 16.65 shows a typical example where an 
analog speed reference can be raised or lowered by operator 
controlled pushbuttons. Note the use of greater than (GTR) 
and less than (LES) instructions to confine the counter 
value within the allowed range of 0±1350 rpm. 
Ranging as above allows engineering units to be used inside 

the program, the counter in Figure 16.65, for example, holds 
the required speed directly in rpm, but this is accompanied by 
a loss of resolution as explained earlier. For the range 0±1350 
rpm, we have a resolution of about 0.1%, compared with the 
theoretical 0.025% resolution available from the card. 
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Figure 16.64 Analog output signals 

Figure 16.65 Setting the speed for a motor with a counter and an analog output card 

There are other operations that can be performed on 
analog signals. A typical list, for the GEM-80, is 

SQRT 

LINCON 
FGEN 

LIMIT 

RAMP 

DEDBAND 

ANALAG 

Square root, mainly used with signals 
from orifice plates. 

Performs X*(A/B) �C with limiting. 
Multipoint straight-line function generator 
used for linearisation as Figure 16.66(a). 

Performs limiting of signals as shown on 
Figure 16.66(b). 

Rate limiting (with different rise and fall 
rates). 

Deadband functions as Figure 16.66(c). 
Useful for preventing `dither' in closed 
loop control when PV and SP are close. 

First Order lag. Used for filtering. 

A simple first order filter can be produced by any PLC 
which supports floating point numbers using the procedure 
shown on Figure 16.67(a). This procedure uses just three 
rungs or three function blocks and is obeyed for one program 
scan at regular time intervals �t. Vi is the raw input signal 
and Vf is the filtered output signal. Vf(n�1) is the filtered value 
obtained on the previous execution �t seconds ago. The 
error between Vi and Vf(n�1) is calculated (Ve) then multiplied 

by a gain K to give a change Vc. This  is  added  to  Vf(n�1) to 
give the new filtered value Vf. Figure 16.67(b) shows the 
response for a step change in Vi with K set at 0.25. At each 
execution of the routine Vf moves 25% of the difference 
between Vi and Vf(n�1). The gain, K, determines the apparent 
time constant and must be in the range 0 <& K <& 1. The gain K 
should be set to �t/T where T is the required time constant. 

16.4.7 Closed loop control 

A closed loop system based on PLCs will be similar to Figure 
16.68. The plant variable, PV,  is read  by an analog input  
card, and the output OP provided by analog output cards. 
The setpoint, SP, is provided by the operator or by some 
program sequence. The PID algorithm is then provided by 
the program. Chapter 13 gives more detail on the theory of 
closed loop control and an explanation of the PID algorithm. 
It is possible to write PID algorithms with four function 

( �� */) mathematics, but it needs great care. The program 
scan time must be known for the integral and derivative 
routines, and protection against output actuator saturation 
must be built in to overcome an effect called integral wind-up. 
PLCs, are becoming increasingly powerful, and most med-

ium range PLCs now provide a three term PID function in 
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Figure 16.66 GEM-80 special functions for use with analog signals: (a) FGEN with N points at equal intervals x; (b) LIMIT, high and low limits can 
be different; (c) DEDBAND without and with offset 

Filtered signal 

(a) 

Vi 
– 

+ 
Raw signal 

Gain 
/Tt 

Ve 
Error 

V
f(n–1) 

t 
Delay 

+ 
+change 

Vc Filtered signal Vf 

(Last value) 

t 

Vraw 

(b) 

time 

Figure 16.67 Programming a first order filter: (a) schematic diagram; (b) response to step input 

their instruction set. Figure 16.69 shows a ratio temperature 
control program written for an Allen Bradley PLC-5 processor. 
These three rungs are controlling the temperature in a 

furnace, with the temperature PID block controlling the air 
valve. The air flow is measured, multiplied by the required 
ratio and used as the setpoint for the gas PID block. 
The control blocks in each PID instruction hold the 

data and working areas for the PID function; things like 
auto/man status and the sum for the integral action. The 
setpoint is written directly into the third word of the control 
block. The process variable is the feedback signal from the 
variable being controlled, usually obtained from an analog 
input card. Settings for gain, Ti and Td are also contained in 
the control block data. 
A three term control algorithm can suffer from integral 

wind-up in saturation or manual operation. The tieback 
variable is used to give the current value corresponding to 
the driven actuator output (possibly after auto/manual 
changeover) and is used to prevent wind-up and to give 
bumpless transfer. The control variable is the signal from 

the PID algorithm, usually sent to an analog output card 
via auto/manual changeover logic. 
The three rungs of Figure 16.69 mask, to some extent, the 

work that must be done elsewhere in the program. Data from 
the outside world must be obtained with analog input cards, 
and the controller output(s) must be written to the actuators 
with analog output cards. The timing of these reads and 
writes must be regular and linked to the PID instructions. 
Auto/manual changeover logic will also be required, 

linked into the PID instructions with the tieback variable 
and the auto/man status flag (which makes the integral 
term track the tieback in manual). 
The operator will also require a link to the control, 

so pushbuttons, displays and alarms must be provided. 
All of this is in addition to the basic PID control. 

16.4.8 Intelligent modules 

We have so far considered analog input and output mod-
ules, which are semi-intelligent (compared to `dumb' digital 
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input and output cards). These are examples of a more gen-
eral range of intelligent modules which most manufacturers 
offer to simplify the designers task. 
A typical example is a high speed counter. We saw earlier 

in Section 16.2.4 that the scan time limits the maximum 
count rate of a PLC to about 10 Hz. High speed counter 
cards are available for use where higher count speeds are 
needed, or the program scan time introduces an unaccept-
able random error. 
In these, the card contains a bi-directional counter which 

can be directly driven by a pulse encoder. The counter value 
can be loaded from the PLC, and read back when needed. 
The PLC can also download a preset value, allowing the 
counter card to directly drive outputs according to the rela-
tionship between the count and the preset. 
Other common intelligent modules are bar code readers 

(for stock tracking), stepper motor controllers (for position 
Figure 16.68 Closed loop control with a PLC control systems) and vision modules (for quality control 

applications). 

PLC-5 LADDER LOGISTICS Report  header (c) ICOM Inc. 1987–1993

PLC-5 Ladder Listing


File £2 Proj : PID2 Page : 001 10:07 05/12/95


Zone Temperature PID instruction.

Adjusts Air control value


New_AnIn Temperature

Data_So PID_Control

Fire_PID (Air_Flow)


B3 PID

0 PID


0	 Control : N7 : 20 

Process Variable : N7 : 100

Tieback : N7 : 106 

Control Variable : N7 :120


Multiply Air Flow in N7:105 by F8:6 to get gas setpoint.

Note that the ratio in F8:6 changes according to

post recuperator air temperature and N7:52 is scaled

by ten to give reasonable range for PID instruction.


New_AnIn

Data_So Gas_Flow

Fire_PID Set point


B3 Mul

1 Mul


0 A :  N7 : 105

1432


B :  F8 : 6 
1.226 

Dest : N7 : 52  

Gas Flow controlled to follow air flow	 1755 

New_AnIn

Data_So Gas_Flow

Fire_PID PID_Control


B3 
PID


2 PID

0
 Control : N7 : 50  

Process Variable : N7 : 107 
Tieback : N7 : 108  
Control Variable : N7 :121 

3	 [END] 

PLC-5 LADDER LOGISTICS Report  header (c) ICOM Inc. 1987–1993 
PLC-5 ladder Listing 

File £2 Proj : PID2 Page : 001 10 : 07  05/12/95 

Figure 16.69 PID control on an Allen Bradley PLC-5 
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16.5 Distributed systems and fieldbus 

16.5.1 Introduction 

For a true distributed control system we need a method 
where several PLCs or computers can be linked together to 
allow communication to freely take place between any 
member of the system. 
To achieve this we need to establish a connection 

topology, some way of sharing the common network that 
prevents time wasting contention and an address system that 
allows messages to be sent from one member to another. 
Such systems are known as Local Area Networks (LAN) or 
Wide Area Networks (WAN) dependent on the size of the 
area and the number of stations. 

16.5.2 Transmission lines 

Any network will be based, to some extent, on cable, and at 
the high speeds used there are aspects of transmission line 
theory that need to be considered. Consider the simple 
circuit of Figure 16.70(a). At the instance that the switch 
closes, the source voltage does not know the value of the 
load at the far end of the line. The initial current step, i, 
is therefore determined not by the load, but by the char-
acteristics of the cable (dependent on the inductance and 

Figure 16.70 Transmission lines and the characteristic impedance: 
(a) a transmission line; (b) the effect of the terminating resistor; 
(c) The effect of a `T' in the line 

capacitance per unit length). A line therefore has a char-
acteristic impedance, typically 75 
 or 50 
 for coax, and 
120 to 150 
 for biaxial or screened twisted pair. The initial 
current step will therefore be V/Z where Z is the character-
istic impedance. 
After a finite time, this current step reaches the load R, 

and produces a voltage step i �( R. If  R is not the same as Z, 
this voltage step will not be the same as V, and a reflection 
will result. Typical results are shown on Figure 16.70(b). 
This effect occurs on all cables and is normally of no con-

cern as the reflections only persist for a short time. 
If, however, the propagation delay down the line is similar 
to the maximum frequency rate of the signal, the reflections 
can cause problems. It follows that a transmission line 
should be terminated by a resistance equal to the character-
istic impedance of the line. Normally, devices for connect-
ing onto a transmission line have a high input impedance to 
allow them to tap in anywhere, with terminating resistors 
being used at the ends of the line. 
A side effect of this is that T connections, or spurs, are 

not allowed (unless the length of the spur is short). In Figure 
16.70(c) a T has been formed. To the signal, coming from 
the left, the two legs appear in parallel giving an apparent 
impedance of Z/2 and a reflection. 

16.5.3 Network topologies 

From the previous section it should be apparent that any 
network can sensibly only be based on a ring (which needs 
no terminating resistors) or a line (with a terminating 
resistor at each end). Figure 16.71 is a master/slave system 
where a common master wishes to receive or send data 
from/to slave devices, but the slaves never wish to talk to 
each other. All the slaves have addresses, which allows the 
master to issue commands such as `Station 3; give me the 
value of analogue input 4' or `Station 14; your setpoint is 
751.2'. Such systems are often based on RS422 to provide 
improved noise immunity and allow longer lengths of line. 
The Star network of Figure 16.72 is again based on a 

master with a point to point link to individual stations. 
This arrangement is commonly used for high level computer 

Figure 16.71 A Master/slave network 

Figure 16.72 A Star network 
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Figure 16.73 A masterless peer to peer or ring network 

Figure 16.74 A peer to peer link arranged as a single line bus with 
terminating resistors 

systems. Communication control is performed by the 
master station. Station to station communication is possible 
via, and with the co-operation of, the master. 
In Figure 16.73 all the stations have been connected in a 

ring. There is no master, and all stations can talk to any 
other station and all have equal right of access. The term 
peer to peer link is often used for this arrangement. With 
Figures 16.71 and 16.72 control was firmly in the hands of 
the master. With the ring, some technique is needed to 
avoid clashes when two stations wish to use the line at the 
same time. We will discuss this in the following section. 
Figure 16.74 is probably the commonest type of network 

used by PLCs. It is a single line with terminating resistors 
and, like the ring, is a peer to peer link where all stations 
have equal standing. 

16.5.4 Network sharing 

A peer to peer link allows many stations to use the same 
network. Inevitably two stations will want to communicate 
at the same time. If no precautions are taken, the result will 
be chaos. Various methods are used to govern access to the 
network. 
One idea is to allocate time slots into which each station 

can put its messages. This is known as Time Division 
Multiplexing, or TDM. Whilst it prevents clashes, it can be 
inefficient as a station will have to wait for its time slot even 
if no other station has a message to send. To some extent a 
mismatch between the frequency of messages from different 
stations can be overcome by giving more slots to hardwork-
ing stations. This is sometimes known as Statistical TDM. 
The empty time slot of Figure 16.75 uses a packet which 

continuously circulates around the ring. When a station 
wishes to send a message it waits for the empty slot to 
come round, when it adds its message. In Figure 16.75, 
station A wishes to send a message to station D. It waits 

Figure 16.75 Empty slot and token passing network 

until the empty packet comes round. Then it puts its mes-
sage onto the network along with the destination address D. 
Stations B and C pass the message but ignore it because it is 
not for their address. Station D matches the address, reads 
the contents (and appends that it has received the message). 
Stations E±H ignore it, but pass it on. Station A receives the 
message back again, sees the acknowledgement and 
removes its message leaving the empty packet circulating 
the ring again. A similar idea is a token passing, where 
a `Permit to Send' token circulates round the network. 
A station can only transmit when it is in possession of the 
token, which is released when the acknowledgement that 
the message arrived is received. 
Bus systems usually employ a method where a station 

wishing to send a message listens to the network to see if it 
is in use. If it is, the station waits. If the network is free, the 
station sends its message (thereby locking out any other 
station until the message ends). This is known as Carrier 
Sense Multiple Access (CSMA). 
Situations can still arise, however, where two stations 

simultaneously start to send a message, and a collision 
(and garbage) results. This situation can easily be detected, 
and both stations then stop and wait for a random time 
before trying again. A random time is used to stop the two 
stations clashing again. This is known as Carrier Sense 
Multiple Access with Collision Detection (or much more 
simply as CSMA/CD). 
There is a fundamental difference between TDM, empty 

slot, and token passing as one group and CSMA. With 
the former there is a certain amount of time wasting, but 
every station is guaranteed access within a specified time. 
With CSMA there is little time wasting, but a station can, 
in theory, suffer repeated collisions and never get access 
at all. 
A useful analogy is to consider motor car traffic control. 

TDM/token passing approximates to traffic lights, CSMA 
to roundabouts. In heavy traffic the best solution is traffic 
lights; everyone gets through and the waiting is shared 
evenly. Roundabouts can `lock out' one road when the traffic 
flow is heavy and uneven from one direction. In light traffic, 
however, roundabouts keep the traffic flowing smoothly. 

16.5.5 A communication hierarchy 

Early process control systems tended to be based on a single 
large computer or PLC. The advent of cheap PLCs with good 
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Figure 16.76 A simple communication hierarchy 

communications has led to the development of a hierarchy of 
machines which split the tasks between them. Such an 
arrangment is called a Distributed Control System or DCS. 
Such a system is generally arranged as Figure 16.76 with a 

hierarchy split into four levels. 

Level 0 is the actual plant, with devices linking to the next 
level by direct wiring or simple RS232/422 serial links. 
Level 1 is the level the majority of this chapter is con-

cerned with, consisting of PLCs and small computers 
directly controlling the plant. 
Level 2 is supervisory computers for large areas of plants. 
Level 3 is the large company mainframe. 

Usually the layout is not as clear cut as this implies. There 
are also differences between different companies, some num-
ber the layers from top to bottom and some ignore level 0. 
There are many advantages to distributed systems. The 

resulting tree is conceptually simple, and as such is easy to 
design, commission, maintain and modify. A correctly 
designed system will be, for short periods, fault tolerant 
and can cope in a limited mode with the failure of individual 
stations. A distributed system can also bring about an 
increase in performance as lower level machines take the 
work off higher level machines. 

16.5.6 Proprietary systems 

In this section we will look at a typical proprietary system 
used to link PLCs from the same manufacturer. Typical 
examples are the GEM-80s Coronet and ESP, Siemen's 
Sinec and Modicon's Modbus. For reasons of space we 
shall consider how machine to machine links are achieved 
with Allen Bradley PLC-5s which communicate with each 
other on a peer to peer (no master) token passing highway 
based on twinaxial cable and operating at 57.6 Kbaud. 
Their trade name is Data Highway Plus. The PLC stations' 
addresses are set on switches in each PLC, and up to 64 
stations can exist on one line with octal addresses 0±77. 
Communication is established with a single message 

(MSG) instruction. This can be set up to read or write a 
block of data, the programmer specifying: 

(1) The start address at the local end; 
(2) The start address at the target end; 
(3) The length of the block to be transferred (in words); and 
(4) The station address at the remote end. 

The MSG instruction appears in a program as Figure 
16.77(a), the transfer being initiated every time the rung 

Level 3 
Company mainframes LANs and WANs 

e.g. Ethernet

Level 2 
Supervisory 
computers 

Proprietary 
Level 1 or fieldbus 
PLCs and control 
computers 

Hardwire or 
fieldbus 

Level 0 
plant devices 

goes true. The ENable bit goes true when the transfer is 
started, and the DoNe bit goes true when it has been 
successfully completed. The ERRor flag goes true when an 
error occurs. Common errors are a line fault, a non existent 
address at the far end or the PLC at the far end shutdown. 
The cause of the fault is given in flags set in the message 
control word. Link statistics (e.g. number of retries) are 
kept in the processor for diagnostic purposes. 
The details of the MSG instruction are set up by the pro-

grammer via the screen of Figure 16.77(b). These are mostly 
self explanatory, with the possible exception of the remote 
link which is concerned with sending data via a gateway 
module to a different highway, possibly of a different type. 
The data highway is also used by the programming term-

inal, so a programmer can connect anywhere onto the data 
highway and link into any machine on the network. 

16.5.7 Ethernet 

Ethernet is a very popular bus based LAN originated by 
DEC, Xerox and Intel and is commonly used to link the 
computers at level 2 in Figure 16.76. It uses 50 
 coaxial 
cable, with a maximum cable length of 500 m (although 
this can be extended with repeaters). Up to 1024 stations 
can be accommodated, although in practical systems the 
number is far lower. Baseband (i.e. non modulated) signal-
ling is used with CSMA/CD access control. The raw data 
rate is 10 Mbaud, giving very fast response at loading levels 
up to about 20±30% of the theoretical maximum. Beyond 
this, collisions start to occur. 
Because Ethernet uses CSMA/CD the successful trans-

mission of a message cannot be guaranteed. It is possible, 
(but unlikely) for a given message to continually suffer from 
crashes and never get access to the network. In the jargon 
ethernet is `non determinstic'. In practice, if the network 
loading is kept below 30% of its theoretical capacity this is 
not a problem. Many PLCs (such as the PLC-5/40E) now 
can provide direct connection to an Ethernet network. 

16.5.8 Towards standardisation 

We have already discussed the difficulties of linking differ-
ent equipment. There is normally little problem linking PLC 
networks to higher level computers. PLC manufacturers 
publish their message format and protocols, and interfacing 
software (called `drivers') has been written for all common 
computers and PLCs. The difficulty comes when you want 
to link two machines from different manufacturers at level 1 
in Figure 16.76. In many cases, the only economical solution 
is to do it through the computers and the higher level link. 
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Figure 16.77 The PLC-5 Message (MSG) Instruction: (a) as written in the ladder diagram; (b) as seen in detail on the programming terminal 

General Motors (GM) in the USA were faced with this 
problem and attempted to specify a LAN for industrial 
control. This was called MAP (Manufacturing Automation 
Protocol). A similar office based LAN called TOP 
(Technical Office Protocol) was conceived at the same 
time. With GM's purchasing muscle, it involved several 
automation equipment manufacturers. A firm commitment 
to the OSI model was made, and the network based on 
broadband token bus as specified in IEEE 802.4 was chosen 
as it is deterministic. 
MAP, however, has not been widely adopted. There 

appears to be several reasons for this distinct lack of 
enthusiasm. The first is a bureaucratic organisation and a 
changing specification. The second reason is cost; MAP links 
often cost more than the PLC to which they are connected. 
The third reason is speed; by using token passing MAP is 
slow by comparison with other standards. The final, and 
perhaps most crucial, fact is that MAP seems to have settled 
at a level where it is in direct competition with established 
LANs such as Ethernet rather than the proprietary systems 
at level 1 of Figure 16.76. 
A standardised fieldbus system would allow PLCs, 

sensors and actuators to be connected and communicate 
with minimal cost. Unfortunately at the time of writing (early 
2002) a standard seems as far away as ever with progress 
being slowed by commercial and national infighting. 
Profibus is one the more common fieldbus contenders, 

largely because it has been adopted by Siemens and many 

other German electrical companies. There are three versions 
of Profibus designed for three different application areas. 
All use token passing. 
The first, called Profibus-DP, for decentralised periphery, 

is by far the commonest and is designed to link intelligent 
masters (e.g. a PLC), to slave devices such as sensors, drives 
or actuators. Profibus only uses levels 1 and 2 of the ISO/OSI 
model. Twisted pair RS485 or fibre optics are used for 
transmission. 
The second, Profibus-FMS, for field message specifica-

tion, is designed for the higher level with multiple masters 
and allowing peer to peer communication. Levels 1, 2 and 7 
of the ISO/OSI model are used and RS485 or fibre optics 
for transmission. 
Both DP and FMS share the same transmission standards 

and can consequently work together on the same network. 
The final form, designed for process automation in hazar-

dous areas, is Profibus-PA which permits the construction 
of an intrinsically safe network. Profibus-PA uses slightly 
different standards to DP and FMS, but can be linked by a 
segment coupler device. 
All are a linear bus system, i.e. a straight line. 

Transmission speeds from 9.6 kbit/s (up to 1200 m) to 
12 Mbit/s (up to 100 m) can be used. Screened twisted pair 
is used, with terminating resistors at each end of the bus. Up 
to 32 stations can be used in each segment, each with 
a unique station address. Segments can be coupled with 
segment repeaters, allowing a total of 127 stations to be 
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Figure 16.78 Profibus-DP network: (a) connection at a Profibus 
device. Non terminating devices use only pins 3 and 8; (b) mapping 
between a Profibus device and memory in the network master 

addressed. Addresses are assigned for global or group data 
reducing the number of messages and time lag problems 
when data for several devices are to be changed together. 
Connections to masters or slaves are made via standard 

9 pin D-type connectors, as shown on Figure 16.78(a). 
Terminating resistors are either switched in internally at 
the end stations or connected inside the final plugs. Note 
that the terminating resistors require power, this normally 
comes from the end stations themselves. 
The manufacturer of each device on the network, e.g. a 

VF drive, provides a disc file, called the GSD, which is a 
description of the data exchange the device can support 
(e.g. accepting speed reference and run command and pro-
viding load current and drive state etc.) plus operating para-
meters such as supported transmission speeds. Included in 
the GSD file is a unique identification number assigned by 
the Profibus User Organisation. The GSD files for all the 
devices on the network are used along with the station 
addresses to build a network description which is held in 
the master. 
Because Profibus-DP only uses levels 1 and 2, the data 

exchange maps onto pre-determined areas in the master 
controller (usually a PLC) as shown on Figure 16.78(b). 
To change the speed of the drive, the user simply writes 
the new speed into the mapped area, and the data is 
transferred with no further action. In a similar manner, 
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slave data and status is automatically read from the 
mapped area. A Profibus-DP network is thus totally 
transparent to the user. 
A typical example of the problems that any attempts to 

specify a standardised fieldbus system may encounter is the 
continual introduction of new ideas. All the communica-
tions systems described so far are based on what is called 
the source/destination model. If station A has information 
for station B, a message is sent with the format: 

Source A | Destination B | Data 

If this information is to be sent to several stations, each will 
need their own message. In applications where multiple 
setpoints have to be sent to multiple controllers, the delay 
caused by the time shift between the messages can cause 
problems, although this can be overcome to some extent 
by the use of group or global addresses as used by Profibus. 
In addition, if station A needs information from station 

B, (the state of an interlock for example), station A must 
perform a read on each occasion the data is required. 
A recent development, called the producer/consumer 

model, uses a different approach. Here data is placed 
onto the network with no indication as to who it is for. 
The format is now simply: 

Identifier | Data 

All stations using this data accept it at the same time, elim-
inating the need for multiple messages. This significantly 
reduces the number of messages and hence increases the 
network speed. 
The placement of data onto the network can be done in 

two ways. The first, and fastest, is `notify on change'. Here a 
station only places information on the network when a new 
value is different than the old. Stations with an interest in 
this data assume that the status or value remains the same 
until notified otherwise. There are obvious dangers in this, 
and a regular pre-defined `heartbeat' is included to say a 
station is active on the network. The second approach 
updates on a time basis, each data item having its own, or 
a global, update time. 
At the time of writing, Foundation Fieldbus is the only 

producer/consumer fieldbus network, and Rockwell (Allen 
Bradley) have also adopted the method for their proprietary 
ControlNet. The latter is interesting as it combines the ideas 
of their remote I/O and Data Highway onto one system and 
allows PLC racks, (and their data), to be shared equally 
amongst several processors and not dedicated to one as 
before. 

16.6 Graphics 

Operator controls are being increasingly provided by 
computer graphic screens. These can be a display device 
designed specifically for a particular range of PLCs (for 
example the Allen Bradley Panelview and the CEGELEC 
Imagem) and general purpose graphic display devices (such 
as ABB/ASEA's excellent Tesselator) or graphics software 
running on conventional personal computers. Figure 16.79 
shows some typical examples. 
The major advantages are simplicity of installation and 

flexibility. A graphics terminal has just two connections to 
the outside world, a serial link connection and a power 
supply. If it is used to replace a desk full of switches and 
indicators there are obvious cost savings. 
The designer of desks or control stations often has to deal 

with changes and modifications. Constructing a desk is 
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Figure 16.79 Various graphic displays: (a) Allen Bradley touchscreen Panelview using block graphics; (b) high resolution Scada system; (c) the 
ABB Tesselator. Photos courtesy of Co-Steel Sheerness, Scomagg and ABB 

always a fine balance of time, choosing between waiting 
until all the requirements are clear, and the minimum time 
needed to make it. Modifications at the commissioning 
stage rarely look neat. The displays on a graphical terminal 
can be modified relatively easily, and, more importantly, the 
modifications leave no scars. If the design of a normal desk 
can only start when the desk contents are 95% finalised 
(which is about right) a graphic screen can be started at 
75% finalised. This flexibility is of great assistance as no 
job is ever right first time. 
There are disadvantages, though. The most important 

of these is the limited amount of information that can be 

displayed on a single screen. It is very easy to overcrowd a 
screen (giving a screen similar to a page full of text on a 
word processor) making it difficult for the operator to 
identify critical items. A useful rule of thumb is not to use 
more than 25±30% of the screen. 
The effect of this is often a need to build up a hierachy of 

screens; the top screen showing an overview, lower screens 
showing more and more detail. The problem with this is the 
time delay needed to shift through the screens. Direct screen 
to screen movement is possible by calling for a page number 
(which needs a good human operator memory, or a direc-
tory piece of paper, or wasted screen space) or by making all 
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screen changes via an intermediate directory page (with 
additional delay). These time delays are small (less than a 
second typically) but the cumulative annoyance is large. 
The time taken to update screen data can also be problem-

atical, particularly where a machine to machine link is 
involved. Again a response time of around one second is 
typical, but several seconds is by no means uncommon. 
The use of a graphic terminal for fault finding on a fast 
moving plant is not really feasible. 
There are generally two types of graphic terminal. The 

simplest, known as block graphics, has one store location 
for each character position on the screen and approximates 
to the old CGA standard on a personal computer. 
The second type of display deals not with individual 

characters, but with individual points on the screen called 
`pixels'. A typical medium resolution screen will have 
640 (horizontal) by 480 (vertical) pixels, a total of 307 200 
points. Each of these can be accessed individually, allowing 
lines to be drawn at any angle, fill patterns of any type to be 
used and trend graphs of plant variables to be displayed. 
Each individual pixel can have its own colour (from over 
256 possible colours in some displays) and intensity. 
The result is an almost photographic resolution. There are 
additional costs, the most obvious of which is a large 
store requirement. The system hardware and software is 
more complex (and hence more expensive) but, perhaps 
surprisingly, this is not apparent to the designer. 
Programming for these screens is surprisingly simple with 
instructions using keywords like 

DRAW FROM < > to < >. 

or pick and place functions similar to a good commercial 
graphics package. 
Supervisory Control and Data Acquisition (SCADA) 

systems are based around graphical objects which are linked 
to variables in the control systems. The state of the objects 
on the screen (e.g. size, colour, rotation, etc.) can be changed 
according to the the values of the variables in the control 
systems giving a very visual image of the operation. 
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The environment around a display needs to be carefully 
considered. Most screens are mounted angled up, and are 
prone to annoying reflections from overhead lights and 
windows. Bright lighting (and above all direct sunlight) 
can make a display impossible to read. Displays are also 
adversely affected by magnetic fields. Close proximity to 
electric motors, transformers or high current cables will 
cause a picture to wobble and the colours to change. The 
effect can be overcome by screening the monitor with a 
mu-metal cage). Flat screen TFT or LCD displays do not 
suffer from this effect. 
The size and weight of the monitors are often overlooked 

making them difficult to mount neatly, and even more diffi-
cult to change. Access should be made as easy as possible; 
trying to hold a 25 kg display in place with one hand whilst 
undoing interminably long mounting screws is not much fun. 
Displays fail, and the implication of this needs to be con-

sidered in the design. If all the plant control is performed 
by screens, what will happen during the ten or so minutes it 
will take to locate a spare and change the faulty unit? Often 
dual displays are used to overcome this problem. 
The operator will obviously need to input data and initi-

ate actions. Keyboards are one approach, but many people 
are nervous of them and the cable connecting the keyboard 
always seems prone to damage. In dirty environments keys 
can become blocked with dirt and membrane keypads with 
tactile (feel) feedback should be used. 
If the operator has to access points anywhere on the 

screen, a tracker ball is a useful device. Rather like an upside 
down mouse it controls the movement of a cursor on the 
screen. All normal actions can be performed with three but-
tons on the trackerball and a numerical keypad. Trackerballs 
work surprisingly well in dirty environments as they are open 
underneath and dirt seems to fall straight through. Mice 
perform a similar function but are vulnerable to damage 
and dirt and seem more suited to an office environment. 
A final consideration is security. Most modern graphics 

systems are based on good quality personal computers. These 
have value outside of industry and are vulnerable to theft. 
Often is it is not the PCs or screens which are stolen, but the 
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internal motherboards and memory cards. Suitable security 
methods should be used if a PC based system is to be 
left unattended for a period of time (e.g. during a Christmas 
shutdown). Needless to say backups should not be stored 
on the same PC as the original system. 

16.7 Software engineering 

Any project goes through six stages during its life. The first 
of these, analysis, is studying the application to understand 
what is required. This is by far the most difficult stage as the 
project requirements are usually unclear. Most projects that 
come unstuck do so because this first stage has been cut 
short or overlooked. 
Next comes specification, which is documenting the 

analysis so everyone concerned can agree what is to be done 
and what the end result should be. If you can't produce 
a specification, how can you sensibly design it? Never say 
`we'll sort that out later' because later becomes 3 a.m. as the 
plant starts up. The final testing procedures must also be 
defined at the specification stage; again if you don't know 
how you will test it, how will you know if it's working prop-
erly? Defining testing procedures in the cold light of 
day several months before the final frantic rush to meet a 
deadline also helps the poor commissioning engineer to 
resist the pleas for a premature start up. 
The importance of these two first stages cannot be over-

emphasised, too often the users do not know, or do not say, 
what they want, but once the project is complete they are 
sure it wasn't that. With these first two difficult stages over, 
the rest of the project becomes much easier! 
The design stage can now start, (simple with a good speci-

fication) followed by installation. Next comes commissioning. 
These can also be difficult times, as in any project the con-
trol engineer ends up collecting everybody's delays and 
comes under pressure to `get the plant away'. It is here that 
the advantage of the test schedule from the specification 
stage will be invaluable. 
It is not generally understood that commissioning 

involves both positive and negative testing. Positive testing 
is obvious; it is ensuring that when the firkling button is 
pressed the plant firkles. Practically everyone sees the need 
for this. Negative testing is less obvious; it is ensuring that 
the control system deals correctly with all the unlikely cir-
cumstances and fault conditions. Negative testing takes far 
far longer, because there are many more fault modes than 
healthy modes. It is very common for people to say `it works, 
let's go' when only the positive testing has been done. Try to 
resist this pressure, at best it can lead to damaged plant a 
few years hence, at worse some safety features could be 
overlooked. 
Finally the plant is handed over to the maintenance 

department. In commercial software it is generally thought 
that over 50% of the effort goes into maintenance as 
changes are made to meet new requirements or correct the 
inevitable bugs. For easy maintenance all the documenta-
tion must be complete and up to date. 

16.8 Safety 

Most industrial processes are hazardous, and the safety of 
all personnel must be of prime importance. This section is a 
personal view and can only give a simple discussion of 
safety considerations. The topic of safety is covered by 
both criminal and civil law. The designer and user of any 

system must therefore consult the relevant legislation and 
codes of practice to ensure compliance. 
Every single person has a safety responsibility. Employers 

have a `duty of care' for their employees and the public and 
must ensure the plant is kept in a safe condition, safe working 
procedures are devised for all conceivable activities, 
and training in these procedures provided for all relevant 
employees. Suppliers must ensure their equipment meets 
safety criteria, and draw the attention of purchasers to 
unavoidable hazards (protection and labelling of parts which 
are live during normal operation for example). Employees 
must follow safety procedures and not expose themselves 
(or others) to danger. These responsibilities are covered by 
the Health and Safety at Work Act 1974 (HASWA) which 
makes the universal responsibility for safety absolutely clear. 
More recently in 1992 a block of EEC Health & Safety 

Regulations (commonly known as the `six pack') introduced 
the idea of risk assessment. This recognises the need to 
balance the cost and complexity of the safety system against 
both the likelihood and severity of injury. The procedures 
outlined use common terms with specific definitions: 

Hazard The potential to cause harm. 
Risk A function of the likelihood of the hazard 

occurring and the severity. 
Danger The risk of injury. 

and outlines procedures to achieve acceptable safety stan-
dards. Risk assessment is a legal requirement under most 
modern legislation, and is covered in detail in standard 
prEN1050 `Principles of Risk Assessment'. 
A Health & Safety Executive study of safety in control 

systems (`Out of Control' HSE books 1995 ISBN 
0717608476) makes worrying reading. It suggests that 
more than 60% of safety related failures are introduced 
into a system before it is taken into service for the first 
time. Approximately 44% of safety incidents come from 
specification errors, 15% from design errors and 6% from 
poorly thought out changes during commissioning. 
The inclusion of a programmable controller brings addi-

tional hazards (and solutions) which must be recognised. 
A PLC can introduce potentially dangerous situations in 
different ways. The first (and probably commonest) route 
is via logical errors in the program. These can be the result 
of oversight, or misunderstanding, on behalf of the original 
designer who did not appreciate that this set of actions 
could be dangerous, or by later modifications by people 
who deliberately (or accidentally) removed some protection 
to overcome a failure in the middle of the night. `Midnight 
programming' is particularly worrying as usually the only 
person who knows it has been done is the offending person, 
and the danger may not be apparent until a considerable 
time passes and the hazardous condition occurs. 
The second possible cause is failure of the input and out-

put modules; in particular the components connected 
directly to the plant which will be exposed to high voltage 
interference (and possibly direct connected high voltages in 
the not unlikely event of cable damage). Output modules 
can also suffer high currents in the (again not unlikely) 
event of a short circuit. Typical output devices are triacs, 
thyristors or transistors. The failure mode of these cannot 
be predicted; all can fail short circuit or open circuit. In 
these failure conditions the PLC would be unable to control 
the outputs. Similarly an input signal card can fail in either 
the `on' or `off ' state, leaving the PLC misinterpreting a 
possibly important signal. 
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The next failure mode is the PLC itself. This can be 
further divided into hardware, software and environmental 
failures. A hardware failure is concerned with the machine 
itself; its power supply, its processor, the memory (which 
contains the `personality' of the PLC, the user's program, 
and the data storage). Some of these failures will have 
predictable effects; a power supply failure will cause all out-
puts to de-energise, and the PLC supplier will have included 
memory checks in the design. Environmental effects arise 
from peculiarities in the installation such as dust, humidity, 
temperature (and rapid temperature changes) possible 
water ingress and vibration, and these can result in unex-
pected operation of output devices. 
The final cause is electrical interference (usually called 

noise). Internally almost all PLCs work with 5 V signals, but 
are surrounded by high voltage high current devices. Noise 
can cause input signals to be misread by the PLC, and in 
extreme cases can corrupt the PLC's internal memory. PLCs 
generally have internal protection against memory corruption 
and noise on remote I/O serial lines, so the usual effect of 
noise is to cause a PLC to stop (and outputs to de-energise). 
This cannot, however, be relied upon. 
Figure 16.80 shows a normal motor starter circuit built 

without a PLC. Safety precautions here are: 

. Isolation switch at the MCC removes the supply for 
maintenance work. 

. Normally closed contacts on the stop and emergency 
stop buttons. A broken wire will look like a stop button 
being pressed, as will loss of the control supply. 

. If the emergency stop is pressed and released, the motor 
does not restart. 

. Isolation and emergency stop have priority over start. 

It is still possible to identify dangerous failure modes in 
this system. The button head of the emergency stop button 
could unscrew and fall off, or the contacts of the contactor 
could weld made, or a short could occur between the cores 
to the stop button but these failure modes are exceedingly 
rare, and Figure 16.80 would be generally accepted as safe 
for use in normal circumstances. 

415v 

I I I  

Stop 

Start 

2 

1 

4 6  

3 5  

M 
3 

F 

Door 
isolator 

C 

Contactor 

C 

F Reset 

Emergency stop
 relay 

C E Stop 

In Figure 16.81(a) the same functions have been provided 
by an unsafe PLC system. To save costs the MCC door 
isolator has been replaced by a simple switch which makes 
to say `Isolate'. Similarly normally open contacts have been 
used for stop and emergency stop. This is controlled by the 
unsafe program of Figure 16.81(b). 
It is important to realise that to the casual user, Figures 

16.80 and 16.81 behave in an identical manner. The differ-
ences (and dangers) come in fault, or unusual, conditions. 
In particular: 

. A person using a programming terminal can force inputs 
or outputs and over-ride the isolation. Although it is unli-
kely that anyone would do this deliberately, it is easy to 
confuse similar addresses and swop digits by mistake 
(forcing 0:23/01 instead of 0:32/01 for example). 

. A loss of the input control supply during running will 
mean the motor cannot be stopped by any means other 
than totally removing the supply to the system. 

. The system is very vulnerable to input and output card 
faults. 

None of these are apparent to the user until an emergency 
occurs. 

A prime rule, therefore, for using PLCs is: 

`The system should be at least as safe as a conventional 
system' 

Figure 16.82(a) is a revised PLC version of Figure 16.80. 
The isolator has been re-instated with an auxiliary contact 
as PLC inputs, and normally closed contacts used for the 
stop and emergency stop buttons. An auxiliary contact has 
been added to the starter, and this is used to latch the PLC 
program of Figure 16.82(b). The emergency stop is hard-
wired into the output and is independent of the PLC, and 
on release the motor will not restart (because the latching 
auxiliary contact in the program will have been lost). On loss 
of control supply the program will think the stop button has 
been pressed, and the motor will stop. Figure 16.82 
thus behaves in failure as Figure 16.80. 

L 

N 

Figure 16.80 A standard hardwired motor starter for a low risk application. This would normally be considered to be safe. In higher risk applications 
there would probably be dual connections on the emergency stop button, dual contactors and the state of the contactors would be monitored by the 
emergency stop relay 
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Figure 16.81 An unsafe PLC based system totally reliant on software. 
The dangers of this system only become apparent when failures occur 

Although this example is simple, it illustrates the neces-
sary analysis and considerations that must be applied in 
more complex systems. 
Complex electronic systems can bring increased safety. 

Consider a thyristor drive controlling the speed of a large 
d.c. motor. In a typical arrangement there will be an upstream 
a.c. contactor to enable the drive. Hardwire connection of an 
emergency stop button into the a.c. contactor will obviously 
stop the drive, but the inertia of the motor and the load will 
keep it rotating for several seconds. A thyristor drive, how-
ever, can stop the load in less than one second by regenera-
tively braking the motor, but this requires the drive to be alive 
and functional. The operation of the emergency stop implies a 
dangerous condition in which the fastest possible stop is 
required. It is almost certain that at this time the drive con-
trols are functional and there are no `latent' faults. 
Here the emergency stop can operate in two ways. First it 

initiates an electronic regenerative crash stop via the control 
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system which should stop the drive in less than one second. 
The emergency stop also releases a delay drop out hardwire 
relay set for 1.5 s which releases the a.c. contactor. This 
gives the safest possible reaction to the pressing of 
the emergency stop button. Safety considerations do not 
therefore, explicitly require relay based, non electronic 
hardware, but the designer must be prepared to justify the 
design decisions and the methods used. 
Where complex control systems are to be used, a com-

mon method of improving safety is to duplicate sensors, 
control systems and actuators. This is known as redundancy. 
A typical application occurs in boilers where feed water is 
held in a drum. Deviations in water level are dangerous; too 
low and the boiler will overheat, possibly to the point of 
melting the boiler tubes; too high and water can be carried 
over to the downstream turbine with risk of catastrophic 
blade failure. High and low level sensors are therefore 
usually provided with each being duplicated. The safety 
system reacts to any fault signal, so two sensors have to 
fail for a dangerous condition to arise. If the probability of 
a sensor failure in time T is p (where 0 <& p <& 1) the prob-
ability of both failing is p 2. In a typical case, p will be of the 

2order of 10�4 failure per year giving p of 10�8. 
There are two disadvantages. The first is that a sensor can 

fail into a permanently safe signal state, and this failure will 
be `latent', i.e. hidden from the user with the plant running 
on one sensor. The second problem is that the plant relia-
bility will go down, since the number of sensors goes up and 
any sensor failure can result in a shutdown. Both of these 
effects can be reduced by using `majority voting' circuits, 
taking the vote of two out of three or three out of five signals. 
Redundancy can be defeated by `common mode' failures. 

These are failures which affect all the parallel paths simulta-
neously. Power supplies, electrical interference on cables 
following the same route and identical components from the 
same batch from the same supplier are all prone to common 
mode failure. For true protection, diverse redundancy must be 
used, with differences in components, routes and implemen-
tation to reduce the possibility of simultaneous failure. 
To give true redundancy it is sensible to provide duplication 

in the control system as well to protect against hardware 
and software failures in the system itself. Duplicate 
control schemes, though, are vulnerable to a form of common 
mode failure called a `systematic failure'. Suppose duplicated 
temperature sensors are compared, inside a PLC program, 
with an alarm temperature. Suppose both are identical 
devices, running the same program containing a bug 
which inadvertently (but rarely so it does not show up 
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Figure 16.82 A safe PLC system for low risk applications. As for Figure 16.80 more features could be added if the risk was higher 
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during simple testing) changes the setting for the alarm 
temperature (from 60 �C say, to 32 053 �C). Such an effect 
could easily occur by a mistype in a MOVE instruction in a 
totally unrelated part of the program. This error will affect 
both control systems, and totally remove the redundancy. 
If reliance is being made on redundant control systems, 

therefore, they should be totally different; different 
machines with different I/O and different programs written 
by different people with the machines installed running on 
different power supplies with different types of sensors con-
nected by different cable routes. 
The Health and Safety Executive (HSE) became 

concerned about the safety of direct plant control with 
computers, and produced an occasional paper OP2 
`Microprocessors in Industry' in 1981. This was followed in 
1987 by two booklets `Programmable Electronics Systems 
in Safety Related Applications'. Book 1 (an Introductory 
Guide) is a general discussion of the topic, and Book 2 
(General Technical Guidelines) goes through the necessary 
design stages. They suggest a five stage process: 

Figure 16.83 Safety critical input with the Siemens 115F PLC 

(i)	 Perform a hazard analysis of the plant or process; 
(ii)	 From this, identify which parts of the control system 

are concerned with safety and which are concerned 
purely with efficient production. The latter can be 
ignored for the rest of the analysis; 

(iii) Determine the required safety level (based on accepted 
attainable standards or published material); 

(iv) Design safety systems to meet	 or exceed these stan-
dards; and 

(v)	 Assess the achieved level (by using predicted probab-
ility of failure for individual parts of the design). Revise 
the design if the required level has not been achieved. 

The books stress the importance of `Quality' in the design; 
quality of components, quality of the suppliers and so on. 
The IEC standard IEC 61508 Functional Safety of 

Electrical/Electronic/Programmable electronic safety related 
systems covers similar grounds to the HSE books. This is 
based on the ideas of safety functionality (what it is designed 
to protect against and how the protection is achieved 

Figure 16.84 Safety critical output with the Siemens 115F PLC 
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e.g. `open quench valve if temperature rises above 250�C') and 
the Safety Integrity Level (or SIL) which, somewhat simpli-
fied, is the probability, p, that the safety system will fail to 
operate on demand. The SIL covers the entire safety system 
including sensors, control system, and actuators. Four 
SILs are defined from a basic SIL-1 (10�1 >& p >10�2) to  
SIL-4 (10�4 >& p >10�5). The required SIL is determined 
from a risk assessment of the system. For continuous 
protection on a hazardous plant the normal requirement is 
SIL-3 or SIL-4. Guidelines for architectural constraints 
(such as keeping the safety system separate from the control 
system, and using redundancy) are also given. It is probable 
that IEC 61508 will become a European standard in the 
near future, and the two HSE books are being re-written 
to incorporate ideas from IEC 61508. 
Surprisingly some fieldbus systems (e.g. specialist versions 

of Profibus and SafetyBus from Pilz) can achieve SIL-3 
which makes a fieldbus safety system attractive in hazardous 
applications. Extreme care must, of course, be taken. 
In America, the Instrument Society of America (ISA) 

standard S84 follows broadly similar lines to the HSE 
guidelines and IEC 61508. 
Because the HSE books, IEC 61508 and S84 are stan-

dards they have the legal status of guidance notes and 
there is no formal requirement to follow them. In the event 
of an incident, however, the designers and users must be 
prepared to justify the actions they have taken and confor-
mance with good practice is a legal defence. 
Very high safety levels can be achieved with some PLCs. 

Siemens market the 115F PLC which has been approved 
by the German TUV Bayern (Technical Inspectorate of 
Bavaria) for use in safety critical applications such as trans-
port systems, underground railways, road traffic control 

and public elevators. The system is based on two 115 PLCs 
and is a model of diverse redundancy. The two machines 
run diverse system software and check each other's actions. 
There is still a responsibility on the user to ensure that no 
systematic faults exist in the application software. 
Inputs are handled as Figure 16.83. Diverse (separate) 

sensors are fed from a pulsed output. A signal is dealt with 
only if the two processors agree. Obviously the choice of 
sense of the signal for safety is important. For an overtravel 
limit, for example, the sensors should be made for healthy 
and open for a fault. 
Actuators use two outputs (of opposite sense) and two 

inputs to check the operation as Figure 16.84. Each  
sub-unit checks the operation of the other by brief pulsing 
of the outputs allowing the circuit to detect cable damage, 
faulty output modules and open circuit actuators. If, for 
example, output B fails on, both inputs A and B will go 
high in the Off state (but the actuator will safely de-energise.) 
The operation of Figures 16.83 and 16.84 is straight-

forward, but it should not be taken as an immediately 
acceptable way of providing a fail-safe PLC. The 115F 
is truly diverse redundant, even the internal integrated 
circuits are selected from different batches and different 
manufacturer, and it contains well tested diverse self checking 
internal software. A DIY system would not have these 
features, and could be prone to common mode or systematic 
failures. 
A PLC system is an electrical system, and is subject 

to the same legislation as conventional electrical schemes. 
Apart from the Health and Safety at Work Act, the designer 
should also observe the Institute of Electrical Engineers 
Wiring Regulations, and the Electricity at Work 
Regulations 1990. 




